This work presents an investigation on the fabrication and characterization of Fe doped zeolitic imidazolate framework (ZIF-8) of 1:1 M ratio of Zn:Fe (Fe/Zn-ZIF-8) and adsorption performances of acquired materials. The synthesized Zn-ZIF-8, Fe-ZIF-8, and Fe/Zn-ZIF-8 materials were characterized for the phase structure, morphology, elemental analysis and surface area by using X-ray diffraction (XRD), Field emission scanning electron microscope (FESEM), Energy Dispersive X-Ray (EDX), and BET surface area, respectively. The results revealed the adsorption capacity was enhanced by incorporation of Fe into ZIF-8 structure. The CR dye adsorption capacities were 287, 219, and 412 mg/g for Zn-ZIF-8, Fe-ZIF-8, and Fe/Zn-ZIF-8 adsorbers, respectively. The CR adsorption obeyed to the pseudo 2nd order model and the Langmuir model was most closely matched during the high value of correlation coefficient (R2), signifying a palpable monolayer adsorption rather than multilayer. Copyright 2023 Elsevier Ltd. All rights reserved. Selection and peer-review under responsibility of the scientific committee of the 6th International Conference on Materials Engineering and Nanotechnology.
The role of residues in the adsorption process for removing contaminants from their aqueous solution was highlighted in this study. The adsorption capacity of eggshells were used to remove the methyl orange dye from its aqueous solution. The highest dye adsorption was found to range between (62.30% to 62.33%). The results of using adsorption isotherms (Freundlich, Langmuir, and Temkin) have been revealed that the Freundlich model was followed and that the Langmuir model did not match, as well as the partial applicability of Temkin's model at temperatures (298,308,318) K. The process of adsorption is a physical one. Three kinetic models of the adsorption process were also used, with the results demonstrating the applicability of the pseud
... Show MoreAn experimental study was conducted with low cost natural waste adsorbent materials, barley husks and eggshells, for the removal of Levofloxacine (LEVX) antibacterial from synthetic waste water. Batch sorption tests were conducted to study their isothermal adsorption capacity and compared with conventional activated carbon which were, activated carbon > barley husks > eggshells with removal efficiencies 74, 71 and 42 % with adsorbents doses of 5, 5 and 50 g/L of activated carbon, barley husks, and eggshells respectively. The equilibrium sorption isotherms had been analyzed by Langmuir, Freundlich, and Sips models, and their parameters were evaluated. The experimental data were correlated well with the Langmuir model which gives the
... Show MoreA simple method was used to create a graphene oxide/chitosan (GO/CS) nanocomposite, which was then used in batch experiments to remove copper ions from industrial wastewater under various conditions of initial concentration, adsorbent weight, pH, and contact time. Maximum removal percentage equal to 99.4 % for initial copper ion concentration of 5x10-2 mol/L at pH 6, time 75 min, temperature 25 °C, and adsorbing dose 0.1 g. The pseudo-second order kinetic model and the Freundlich isotherm adequately fit the experimental results. The process was spontaneous and endothermic, according to thermodynamic studies.
A range of batch experiments were carried out for the estimation of the key process parameters in adsorption of Furfural from aqueous solution onto activated carbon in fixed-bed adsorber. A batch absorber model has been used to determine the external mass transfer coefficient (kf) which equal to 6.24*10-5 m/s and diffusion coefficient (Dp) which equal to 9.875*10-10 m2/s for the Furfural system. The Langmuir model gave the best fit for the data at constant temperature (30oC). The pore diffusion mathematical model using nonlinear isotherm provides a good description of the adsorption of Furfural onto activated carbon.
Sediment accumulated in sewers is a major concern source as it induces numerous operational and environmental problems. For instance, during wet weather flow, the re-suspension of this sediment accompanied by the combined sewer overflow may cause huge pollutant load to the receiving water body. The characteristics of the sewer sediment are important as it shapes its behaviour and determines the extent of the pollution load. In this paper, an investigation of sewer sediment and its characterization is done for a case study in Baghdad city. Sediment depth covers more than 50% of the sewer cross-sectional area; several operational causes are comprised to cause this huge depths of sediment depositions. The testing and analysis of the s
... Show MoreSuperconducting compound Bi2Sr2-xYxCa2Cu3O10+δ were Synthesized by method of solid state reaction, at 1033 K for 160 hours temperature of the sintering at normal atmospheric pressure where substitutions Yttrium oxide with Strontium. When Y2O3 concentration (0.0, 0.1, 0.2, 0.3, 0.4 and 0.5). All specimens of Bi2Sr2Ca2Cu3O10+δ superconducting compounds were examined. The resistivity of electrical was checked by the four point probe technique, It was found th
A random laser has been produced using Fluorescein dye solution in water, with concentration of (8 10-5 M); doped with (0.001g) TiO2 Nanoparticles with the particle size of (15.7 nm). A blue diode laser of 450 nm wavelength has been used as an optical pumping source. The wavelength of the random laser was 523 nm and the intensity was 5.44 mW
Solar cells has been assembly with electrolytes including I−/I−3 redox duality employ polyacrylonitrile (PAN), ethylene carbonate (EC), propylene carbonate (PC), with double iodide salts of tetrabutylammonium iodide (TBAI) and Lithium iodide (LiI) and iodine (I2) were thoughtful for enhancing the efficiency of the solar cells. The rendering of the solar cells has been examining by alteration the weight ratio of the salts in the electrolyte. The solar cell with electrolyte comprises (60% wt. TBAI/40% wt. LiI (+I2)) display elevated efficiency of 5.189% under 1000 W/m2 light intensity. While the solar cell with electrolyte comprises (60% wt. LiI/40% wt. TBAI (+I2)) display a lower efficiency of 3.189%. The conductivity raises with the
... Show MoreThe sorption of Cu2+ ions from synthetic wastewater using crushed concrete demolition waste (CCDW) which collected from a demolition site was investigated in a batch sorption system. Factors influencing on sorption process such as shaking time (0-300min), the initial concentration of contaminant (100-750mg/L), shaking speed (0-250 rpm), and adsorbent dosage (0.05-3 g/ml) have been studied. Batch experiments confirmed that the best values of these parameters were (180 min, 100 mg/l, 250 rpm, 0.7 g CCDW/100 ml) respectively where the achieved removal efficiency is equal to 100%. Sorption data were described using four isotherm models (Langmuir, Freundlich, Redlich-Peterson, and Radke-Prausnitz). Results proved that the pure ads
... Show More Aluminum alloys widely use in production of the automobile and the aerospace because
they have low density, attractive mechanical properties with respect to their weight, better
corrosion and wear resistance, low thermal coefficient of expansion comparison with traditional
metals and alloys. Recently, researchers have shifted from single material to composite materials
to reduce weight and cost, improve quality, and high performance in structural materials.
Friction stir processing (FSP) has been successfully researched for manufacturing of metal
matrix composites (MMCs) and functional graded materials (FGMs), find out new possibilities
to chemically change the surfaces. It is shown th