This work presents an investigation on the fabrication and characterization of Fe doped zeolitic imidazolate framework (ZIF-8) of 1:1 M ratio of Zn:Fe (Fe/Zn-ZIF-8) and adsorption performances of acquired materials. The synthesized Zn-ZIF-8, Fe-ZIF-8, and Fe/Zn-ZIF-8 materials were characterized for the phase structure, morphology, elemental analysis and surface area by using X-ray diffraction (XRD), Field emission scanning electron microscope (FESEM), Energy Dispersive X-Ray (EDX), and BET surface area, respectively. The results revealed the adsorption capacity was enhanced by incorporation of Fe into ZIF-8 structure. The CR dye adsorption capacities were 287, 219, and 412 mg/g for Zn-ZIF-8, Fe-ZIF-8, and Fe/Zn-ZIF-8 adsorbers, respectively. The CR adsorption obeyed to the pseudo 2nd order model and the Langmuir model was most closely matched during the high value of correlation coefficient (R2), signifying a palpable monolayer adsorption rather than multilayer. Copyright 2023 Elsevier Ltd. All rights reserved. Selection and peer-review under responsibility of the scientific committee of the 6th International Conference on Materials Engineering and Nanotechnology.
The research is dealing with the absorption and fluorescence spectra for the hybrid of an Epoxy Resin doped with organic dye Rhodamine (R6G) of different concentrations (5*10-6, 5*10-5, 1*10-5, 1*10-4, 5*10-4) Mol/ℓ at room temperature. The Quantum efficiency Qfm, the rate of fluorescence emission Kfm (s-1), the non-radiative lifetime τfm (s), fluorescence lifetime τf and the Stokes shift were calculated. Also the energy gap (Eg) for each dye concentration was evaluated. The results showed that the maximum quantum effi
... Show MoreIn this study, gold nanoparticle samples were prepared by the chemical reduction method (seed-growth) with 4 ratios (10, 12, 15 and 18) ml of seed, and the growth was stationary at 40 ml. The optical and structural properties of these samples were studied. The 18 ml seed sample showed the highest absorbance. The X- ray diffraction (XRD) patterns of these samples showed clear peaks at (38.25o, 44.5o, 64.4o, and 77.95o). The UV-visible showed that the absorbance of all the samples was in the same range as the standard AuNPs. The field emission-scanning electron microscope (FE-SEM) showed the shape of AuNPs as nanorods and the particle size between 30-50 nm. Rhodamine-610 (RhB) was prepared at 10<
... Show MoreThis work aim to prepare Ag/R6G/PMMA nanocomposite thin
films by In-situ plasma polymerization and study the changes in the
optical properties of fluorophore due to the presence of Ag
nanoparticles structures in the vicinity of the R6G laser dye. The
concentrations of R6G dye/MMA used are: 10-4M solutions were
prepared by dissolving the required quantity of the R6G dye in
MMAMonomer. Then Silver nanoparticles with 50 average particles
size were mixed with MMAmonomer with concentration of 0.3, 0.5,
0.7wt% to get R6G silver/MMA in liquid phase. The films were
deposited on glass substrates by dielectric barrier discharge plasma
jet. The Ag/R6G/PMMA nanocomposite thin films were
characterization by UV-Visible
In this work, two different laser dye solutions were used to host highly-pure silicon nitride nanoparticles as scattering centers to fabricate random gain media. The laser dye was dissolved in three different solvents (ethanol, methanol and acetone) and the final results were obtained for methanol only. The silicon nitride nanoparticles were synthesized by dc reactive magnetron sputtering technique with average particle size of 35 nm. The random gain medium was made as a solid rod with high spectral efficiency and low production cost. Optical emission with narrow linewidth was detected at 532-534 nm as 9 mg of silicon nitride nanoparticles were added to the 10 -5 M dye solution. The FWHM of 0.3 and 3.52 nm was determined for Rhodamine B and
... Show MoreSpectrophotometric method was developed for the determination of copper(II) ion. Synthesized (2,2[O-Tolidine-4,4-bis azo]bis[4,5-diphenyl imidazole]) (MBBAI) was used as chromogenic reagent at pH=5. Various factors affecting complex formation, such as, pH effect, reagent concentration, time effect and temperature effect, have been considered and studied. Under optimum conditions concentration ranged from (5.00-80.00) µg/mL of copper(II) obeyed Beer`s Low. Maximum absorption of the complex was 409nm with molar absorpitivity 0.127x104 L mol-1 cm-1. Limit of detection(LOD) and Limit of quantification were 1.924 and 6.42 μg/mL, respectively.
... Show MoreLead remediation was achieved using simple cost, effective and eco-friendly way from industrial wastewater. Phragmitesaustralis (P.a) (Iraqi plant), was used as anovel biomaterial to remove lead ions from synthesized waste water. Different parameters which affected on adsorption processes were investigated like adsorbent dose, pH, contact time, and adsorbent particle size, to reach the optimized conditions (maximum adsorption). The adsorption of Pb (?) on (P.a) involved fast and slow process as a mechanism steps according to obey two theoretical adsorption isotherms; Langmuir and Freundlich. The thermos dynamic adsorption parameters were evaluated also. The (?H) obtained positive value that meanes adsorption of lead ions was an endothermic
... Show MoreIn recent years, it has been evident that searching for alternative methods with low-price and eco-friendly features that produce high-quality adsorbents is in high demand. In the present work, Rice husk from Iraqi rice named (Amber) had been used as the primary source to produce rice husk ash (RHA) for the removal of the antibiotic metronidazole (Flagyl) from water. After optimum drying of rice husk, rice husk ash (RHA) was obtained at 600 °C using an electric oven. RHA has been investigated for properties using X-ray diffraction (XRD), porosity, and surface area (SA). The experimental work adsorption data were optimized to evaluate Langmuir and Freundlich constants. The thermodynamic parameters likely a change in Gipp's energy (ΔG),
... Show MoreIn this study, ceramic purifier (CP) was produced from a mixture of Iraqi raw materials. This ceramic mixture was prepared using Bentonite as a Clay, Porcelanite as a Silica, and Limestone as a flux. The produced ceramic filter was formed by semi-dry compressing method and was fired at 1200 C?. Physical properties of the produced CP were measured. A hydraulic test rig was constructed to study the hydraulic conductivity of the produced CP. The average hydraulic conductivity of the produced CP was 55 times that of commercial types of ceramic filters. The mineral composition of the produced ceramics was found by X-Ray tests. Tests results showed that all of the produced ceramics filters composed mainly of low Cristobalte and Tridoymite in addi
... Show MoreThis work was conducted to determine the volumetric mass transfer coefficient (Ky.a) infixed bed adsorption using hexane-benzene mixture by adsorption onto a fixed bed of white silica gel. Benzene concentration was measured by gas chromatography. The effect of feed flow rate and initial concentration of benzene in hexane-benzene mixture on the volumetric mass transfer coefficient and on the adsorption capacity of silica gel was investigated.
In general, the volumetric mass transfer coefficient increases with increasing hexane flow rate, and with increasing initial concentration of benzene in the mixture. The ultimate value of (Ky.a) was at 53 ml/min of hexane flow rate with benzene initial concentration of (6.53 wt. %), and it wa
... Show MoreOxidation of sulfur compounds in fuel followed by an adsorption process were studied using two modes of operation, batch mode and continuous mode (fixed bed). In batch experiment oxidation process of kerosene with sulfur content 2360 ppm was achieved to study the effect of amount of hydrogen peroxide(2.5, 4, 6 and 10) ml at different temperature(40, 60 and 70)°C. Also the effect of amount acetic acid was studied at the optimal conditions of the oxidation step(4ml H2O2 and 60 °C).Besides, the role of acetic acid different temperatures(40, 60, 70) °C and 4ml H2O2, effect of reaction time(5, 30, 60, 120, 300) minutes at temperatures(40,60) °C, 4ml H2O2 and 1 mlHAC)&
... Show More