Objectives Dental implant is a revolution in dentistry; some shortages are still a focus of research. This study use long duration of radiofrequency (RF)–magnetron sputtering to coat titanium (Ti) implant with hydroxyapatite (HA) to obtain a uniform, strongly adhered in a few micrometers in thickness. Materials and Methods Two types of substrates, discs and root form cylinders were prepared using a grade 1 commercially pure (CP) Ti rod. A RF–magnetron sputtering device was used to coat specimens with HA. Magnetron sputtering was set at 150 W for 22 hours at 100°C under continuous argon gas flow and substrate rotation at 10 rpm. Coat properties were evaluated via field emission scanning electron microscopy (FESEM), scanning electron microscopy–energy dispersive X-ray (EDX) analysis, atomic force microscopy, and Vickers hardness (VH). Student’s t-test was used. Results All FESEM images showed a homogeneous, continuous, and crack-free HA coat with a rough surface. EDX analysis revealed inclusion of HA particles within the substrate surface in a calcium (Ca)/phosphorus (P) ratio (16.58/11.31) close to that of HA. Elemental and EDX analyses showed Ca, Ti, P, and oxygen within Ti. The FESEM views at a cross-section of the substrate showed an average of 7 µm coat thickness. Moreover, these images revealed a dense, compact, and uniform continuous adhesion between the coat layer and the substrate. Roughness result indicated highly significant difference between uncoated Ti and HA coat (p-value < 0.05). A significant improvement in the VH value was observed when coat hardness was compared with the Ti substrate hardness (p-value < 0.05). Conclusion Prolonged magnetron sputtering successfully coat Ti dental implants with HA in micrometers thickness which is well adhered essentially in excellent osseointegration.
Background: The polymethyl methacrylate is the most reliable material for the construction of complete and partial dentures, despite satisfying esthetic demand itsuffered from having unsatisfactory properties like impact strength and transverse strength. This study was designed to improve the impact strength and transverse strength of heat cure acrylic resin by adding untreated and oxygen plasma treated polypropylene fibers and investigate the effect of this additive on some properties of acrylic resin materials. Materials and methods: Untreated and oxygen plasma treated polypropylene fibers was added to PMMA powder by weight 2.5 %. Specimens were constructed and divided into 5 groups according to the using tests; each group was subdivided
... Show MoreBackground: Cleaning and shaping of root canals successfully requires high volumes of irrigation solutions that can only be applied to the apical third of root canal after enlargement with instrument, so the aim of this study was to evaluate and to compare the efficiency of Maxi-I-probe (side-vented needle), in the amount of root canal irrigant penetration for five different master apical file sizes (MAF) and four different degrees of coronal and middle thirds flaring. Materials and Methods: Two hundred resin blocks with simulated root canals were used in this study and divided into 5 major groups (40 for each) based on the size of master apical files (#20, #25, #30, #35, and #40). Each major group was subdivided into 4 subgroups depending
... Show MoreResearch was conducted to study the effect of proline and aspirin with 10 and 20 ppm on seed germination and seedling growth of Lycopersicon esculentum and the effect of surface growth of Fusarium oxysporum. The results showed that the proline and aspirin effected significantly to decreased percentage of seed germination, acceleration of germination, promoter indicator, elongation speed of radical and plumule and also the infection percentage of seed decay and surface growth of Fusarium oxysporum was reduced significantly.
The current study was conducted to find out the effect of the sediment source (sedimentary of Iraqi-Iranian borderline and Tigris River) on the content and distribution of feldspar minerals and their effect on the optical properties of these minerals in some soils of Wasit and Maysan province. Eight pedons were chosen to represent the study area, five of them represented sediments coming from the borderline, which included pedons of (Badra, Taj Al-Din, Al-Shihabi, Jassan, and Galat), while two of them represent the sediments of the Tigris River (Essaouira, Al-Dabouni). Finally, the pedon of Ali Al-Gharbi represented the mixing area of sediments of all the torrents coming from borderline and the sediments of the Tigris River. The diagnostic
... Show MoreBackground: The mechanical and physical properties of Polymethyl methacrylate (PMMA) don’tfulfill the entire ideal requirements of denture base materials. The purpose of this study was to produce new modified polymer nanocomposite (PMMA /ZrO2-TiO2) andassess itsimpact strength, transverse strength and thermal conductivity in comparison to the conventionalheat polymerized acrylic resin. Materials and Methods: Both ZrO2 and TiO2nano fillers were silanized with TMSPM (trimethoxysilyl propyl methacrylate) silane coupling agent before beingdispersed by ultrasonication with the methylmethacrylate (monomer) and mixed with the polymer by means of 2% by weight in (1:1) ratio, 60 specimens were constructed by conventional water bath processing
... Show MoreThe research aims to measure the impact of envy on job stress because the topic of envy represents a negative emotion that exists at all organizational levels, which may cause stress in the work environment.
The Research problem is represented by the lack of perception of most of the faculty staff on the negative effects of envy on their well-being in the Technical College of Management - Baghdad, and what is the impact level of envy on their job stress.
To achieve this, the scale of envy was based on two dimensions (being envied, Envying others), While the job stress scale was based on seven dimensions (workload, conflict role, Family factors, work environment, work relationships
... Show MoreBackground: The repair of bone defects remains a major clinical orthopaedic challenge. Bone is a highly vascularised tissue reliant on the close spatial and temporal connection between blood vessels and bone cells to maintain skeletal integrity. Angiogenesis thus plays a pivotal role in skeletal development and bone fracture repair. The role of angiogenic and osteogenic factors in the adaptive response and interaction of osteoblasts and endothelial cells during the multi step process of bone development and repair will be highlighted in this study. This study aimed to identify the role of local exogenous vascular endothelial growth factor in bone healing and to analyze the expression of VEGF by immunohistochemistry in created bone defect af
... Show More