Objectives Dental implant is a revolution in dentistry; some shortages are still a focus of research. This study use long duration of radiofrequency (RF)–magnetron sputtering to coat titanium (Ti) implant with hydroxyapatite (HA) to obtain a uniform, strongly adhered in a few micrometers in thickness. Materials and Methods Two types of substrates, discs and root form cylinders were prepared using a grade 1 commercially pure (CP) Ti rod. A RF–magnetron sputtering device was used to coat specimens with HA. Magnetron sputtering was set at 150 W for 22 hours at 100°C under continuous argon gas flow and substrate rotation at 10 rpm. Coat properties were evaluated via field emission scanning electron microscopy (FESEM), scanning electron microscopy–energy dispersive X-ray (EDX) analysis, atomic force microscopy, and Vickers hardness (VH). Student’s t-test was used. Results All FESEM images showed a homogeneous, continuous, and crack-free HA coat with a rough surface. EDX analysis revealed inclusion of HA particles within the substrate surface in a calcium (Ca)/phosphorus (P) ratio (16.58/11.31) close to that of HA. Elemental and EDX analyses showed Ca, Ti, P, and oxygen within Ti. The FESEM views at a cross-section of the substrate showed an average of 7 µm coat thickness. Moreover, these images revealed a dense, compact, and uniform continuous adhesion between the coat layer and the substrate. Roughness result indicated highly significant difference between uncoated Ti and HA coat (p-value < 0.05). A significant improvement in the VH value was observed when coat hardness was compared with the Ti substrate hardness (p-value < 0.05). Conclusion Prolonged magnetron sputtering successfully coat Ti dental implants with HA in micrometers thickness which is well adhered essentially in excellent osseointegration.
Traction force and power requirement when performing primary tillage occupy the minds of almost farmers, this field research had aim to determine and calculate the pulling force of the most commonly used moldboard and chisel plows, the research conducted in silt clay loam for chisel and moldboard plows as the main factor, two depths of tillage 18 and 25 cm as a second factor and three speeds of tractor 2.55, 4.30 and 6.15 km.h-1 as a third factor. Moldboard plow recorded least traction force 7.550 kN, drawbar power 11.583 hp, power losses due to slippage 1.088 hp, power on the rear axle of the tractor 15.770 hp and brake horse power 17.495 hp. Chisel plow recorded best traction efficiency 76.217 % and total traction efficiency 68.659 %. Dep
... Show MoreThe aim of this study is to determine and evaluate the units and subunits of Mishrif Formation in Garraf oil field 85 km north of Nasiriyah city depending mainly on the geophysical well logging data and other amiable geological information. The sets of the geophysical well logs data acquired from GA-4, GA- AIP, GA- B8P, GA-3 and GA-5 wells of Garraf oil field are used to determine the petrophysical and lithological properties for each zone in Mishrif Formation to locate, define and evaluate hydrocarbon production from each zone in the reservoir which is also known as formation evaluation. The digitization was done by using Didger software and the interpretations were made using Interactive Petrophysics Program v 3.5 and Petrel software.
... Show MoreBuzurgan oil Field which is located in south of Iraq has been producing oil for five decades that caused production to drop in many oil wells. This paper provides a technical and economical comparison between the ESP and gas lift in one oil well (Bu-16) to help enhancing production and maximize revenue. Prosper software was used to build, match and design the artificial lift method for the selected well, also to predict the well behavior at different water cut values and its effect on artificial lift method efficiency. The validity of software model was confirmed by matching, where the error difference value between actual and calculated data was (-1.77%).
The ESP results showed the durability of ESP regarding th
... Show MoreA 3D geological model for Mishrif Reservoir in Nasiriyah oil field had been invented "designed" "built". Twenty Five wells namely have been selected lying in Nasiriyah Governorate in order to build Structural and petrophysical (porosity and water saturation) models represented by a 3D static geological model in three directions .Structural model showed that Nasiriyah oil field represents anticlinal fold its length about 30 km and the width about 10 km, its axis extends toward NW–SE with structural closure about 65 km . After making zones for Mishrif reservoir, which was divided into 5 zones i.e. (MA zone, UmB 1zone,MmB1 zone ,L.mB1 zone and mB2zone) .Layers were built for each zone depending on petrophysical propertie
... Show MoreBuilding a 3D geological model from field and subsurface data is a typical task in
geological studies involving natural resource evaluation and hazard assessment. In
this paper a 3D geological model for Asmari Reservoir in Fauqi oil field has been
built using petrel software. Asmari Reservoir belongs to (Oligocene- Lower
Miocene), it represents the second reservoir products after Mishrif Reservoir in Fauqi
field. Five wells namely FQ6, FQ7, FQ15, FQ20, FQ21 have been selected lying in
Missan governorate in order to build Structural and petrophysical (porosity and water
saturation) models represented by a 3D static geological model in three directions
.Structural model shows that Fauqi oil field represents un cylin
Pulsar stars are rotating Neutron stars can be divided into two types Millisecond and Normal Pulsars. In this work the magnetic field are concentrated depends on the period (P), and Period derivative (P) for a sample Normal, Millisecond and Radio stars which adopted. In addition, the values of spin down luminosity and Heating rate are determined by depending on (Ostriker and Gunn) model. The results showed that older Millisecond define as having greater ages specified how long pulsars lives at that ages very long period pulsars to be observable have particularly large surface magnetic field. The results indicate that spin down of luminosity for Millisecond and Normal star must due to the main energy loss rotation axis to align with magne
... Show MoreA neutron induced deuteron emission spectra and double differential cross-sections (DDX), in 27Al (n, D) 26Mg, 51V (n, D)50Ti , 54Fe ( n, D)53Mn and 63Cu (n, D) 62Ni reactions, have been investigated using the phenomenological approach model of Kalbach. The pre-equilibrium stage of the compound nucleus formation is considered the main pivot in the discription of cross-section, while the equilibrium (pick up or knock out ) process is analyzed in the framework of the statistical theory of cluster reactions, Feshbach, Kerman, and Koonin (FKK) model. To constrain the applicable parameterization as much as possible and to assess the predictive power of these models, the calculated results have been compared with the experimental data and othe
... Show MoreThe Indian costus plasma properties are investigated including electron temperature (Te), "electron density (ne)", "plasma frequency (fp)", " Debye sphere length", and amount of Debye(Nd), using the spectrum of optical emission technique. There are several energies used, with ranging from 300 to 600 mJ. The Boltzmann Plot is used to calculate the temperature; where as Stark's Line Broadening is used to calculate the electron density. The Indian costus was spectroscopically examined in the air with the laser at 10 cm away from the target and the optical fiber at 0.5 cm away. The results were obtained for an electron temperature range of (1.8-2.2) electron volts (ev) and a wavelength range of (300-600) nm. The XRF analysis reveals th
... Show MoreThis research delves into the realm of asphalt technology, exploring the potential of nano-additives to enhance traditional asphalt binder properties. Focusing on Nano-Titanium Dioxide (NT), Nano-Aluminum Oxide (NA), and Nano-Silica Oxide (NS), this study investigates the effects of incorporating these nanomaterials at varying dosages, ranging from 0% to 8%, on the asphalt binder’s performance. This study employs a series of experimental tests, including consistency, storage stability, rotational viscosity, mass loss due to aging, and rheological properties, to assess the impact of nano-additives on asphalt binder characteristics. The findings indicate a substantial improvement in the consistency of the asphalt binder with the add
... Show MoreThis research delves into the realm of asphalt technology, exploring the potential of nano-additives to enhance traditional asphalt binder properties. Focusing on Nano-Titanium Dioxide (NT), Nano-Aluminum Oxide (NA), and Nano-Silica Oxide (NS), this study investigates the effects of incorporating these nanomaterials at varying dosages, ranging from 0% to 8%, on the asphalt binder’s performance. This study employs a series of experimental tests, including consistency, storage stability, rotational viscosity, mass loss due to aging, and rheological properties, to assess the impact of nano-additives on asphalt binder characteristics. The findings indicate a substantial improvement in the consistency of the asphalt binder with the add
... Show More