Warm mix asphalt (WMA) is relatively a new technology which enables the production and compaction of asphalt concrete mixtures at temperatures 15-40 °C lower than that of traditional hot mix asphalt HMA. In the present work, six asphalt concrete mixtures were produced in the mix plant (1 ton each) in six different batches. Half of these mixes were WMA and the other half were HMA. Three types of fillers (limestone dust, Portland cement and hydrated lime) were used for each type of mix. Samples were then taken from these patches and transferred to lab for performance testing which includes: Marshall characteristics, moisture susceptibility (indirect tension test), resilient modulus, permanent deformation (axial repeated load test) and fatigue characteristics (third point flexural beam test). The obtained results indicated that the performance of WMA is enhanced when using the hydrated lime as filler in comparison with the limestone dust and Portland cement fillers. Better fatigue life was obtained for WMA using hydrated lime filler in comparison with HMA. Regardless the filler type, the Marshall properties of WMA satisfy the requirement of local specification, other properties of WMA were relatively lower than the HMA.
In this paper it is required to enhance the performance of a mechanical system (here: a Hoisting System) where it is preferred to lift a different payloads with approximately the same speed of lifting and keeping at the same time the good performance, and this of course needs some intelligence of the system which will be responsible on measuring the present load and taking into account the speed and performance desired in order to achieve the requirements or the criteria. The process therefore is a Mechatronics System design which includes a measuring system, a control or automation technique, and an actuating system. The criteria built here in this research using a given Hoist system's characteristics and parameters and changing one of
... Show MoreBacteriocin is an important antimicrobial peptide that can be used in industrial and medical fields due to its characteristics of antibacterial, food preservation and anticancer activities. Fifty isolates of Bacillus sp were collected from different soil samples which were already recognized via morphological and biochemical identification process. The isolates were screened for bacteriocin production effective against Staphylococcus spp in order to select the highest producing isolate. The isolate NK16 showed the maximum bacteriocin production (80 AU/ml) which was further characterized as Bacillus subtilis NK 16 through using API identification system (API 20E and API 50CHB). Then, next step was to detect the optimal conditions for maximum
... Show MoreIntroduction and Aim: Klebsiella pneumoniae is a Gram-negative bacterium responsible for a wide range of infections, including respiratory tract infections (RTIs). This research was aimed to study the antibacterial and antibiofilm effect of AgNPs produced by Gram positive and negative bacteria on RTIs associated with K. pneumoniae. Materials and Methods: The biofilm formation of K. pneumoniae was determined by tube method qualitatively from select bacterial species characterized by UV-Visible spectroscopy. The antibacterial susceptibility of the bacteria AgNPs was tested for their antibacterial and antibiofilm activity on a clinical isolate of K. pneumoniae. Results: K. pneumoniae isolated from RTIs were strong biofilm producers. The ant
... Show MoreIntroduction and Aim: Klebsiella pneumoniae is a Gram-negative bacterium responsible for a wide range of infections, including respiratory tract infections (RTIs). This research was aimed to study the antibacterial and anti-biofilm effect of AgNPs produced by Gram positive and negative bacteria on RTIs associated with K. pneumoniae. Materials and Methods: The biofilm formation of K. pneumoniae was determined by tube method qualitatively from select bacterial species characterized by UV-Visible spectroscopy. The antibacterial susceptibility of the bacteria AgNPs was tested for their antibacterial and antibiofilm activity on a clinical isolate of K. pneumoniae. Results: K. pneumoniae isolated from RTIs were strong biofilm prod
... Show MoreThe majority of the environmental outputs from gas refineries are oily wastewater. This research reveals a novel combination of response surface methodology and artificial neural network to optimize and model oil content concentration in the oily wastewater. Response surface methodology based on central composite design shows a highly significant linear model with P value <0.0001 and determination coefficient R2 equal to 0.747, R adjusted was 0.706, and R predicted 0.643. In addition from analysis of variance flow highly effective parameters from other and optimization results verification revealed minimum oily content with 8.5 ± 0.7 ppm when initial oil content 991 ppm, tempe
Jatropha L. is an exotic genus to Iraq and it has been cultivated in gardens for ornamental purposes because of the shiny red color of the flowers. The plant adapted to environmental conditions and succeeded in growing and blooming, which is why the species was interested to study. The species Jatropha integerrima Jacq. was examined and diagnosed for the first time in Iraq. Morphological and anatomical characteristics for leaves (considering that the variations are the most reliable and taxonomically important) were provided. The Phytochemical screening showed the presence of alkaloids, flavonoids, terpenes, tannins and saponins. The qualitative analysis by TLC indicated the presence of alkaloids and flavonoid that was detected by specia
... Show MoreThe Catharanthus roseus plant was extracted and converted to nanoparticles in this work. The Soxhlet method extracted alkaloid compounds from the plant Catharanthus roseus and converted them to the nanoscale. Chitosan polymer was used as a linking material and converted to Chitosan nanoparticles using Sodium TriPolyPhosphate (STPP). The extracted alkaloids were linked with Chitosan nanoparticles CSNPs by maleic anhydride to get the final product (CSNPs- Linker- alkaloids). The synthesized (CSNPs- Linker- alkaloids) was characterized using SEM spectroscopy UV–Vis., Zeta Potential, and HPLC High-Performance Liquid Chromatography. Scanning electron microscope (SEM) analysis shows that the Chitosan nanoparticles (CSNPs) have small dim
... Show More