The present study aimed to synthesize selenium nanoparticles (SeNPs) using aqueous extract of black currant as a reducing agent. The green synthesized black currant selenium nanoparticles (BCSeNPs) were identified by color change. The characterization of SeNPs was achieved by Ultraviolet-visible (UV–VIS) spectroscopy, scanning electron microscopy (SEM), X–ray diffraction analysis (XRD), and Fourier transform infrared spectroscopy (FTIR). These tests were used to detect: stability, morphology, size, crystalline nature, and functional groups present on the surface of BCSeNPs. The results revealed appearance of the brick-red color indicating the specific color of selenium nanoparticles, and UV-Vis spectroscopy showed band absorbance at 265 nm of intense surface plasmon resonance manifesting the formation and stability of the prepared BCSeNPs. The SEM image showed the prevalence of spherical selenium nanosized, XRD at 2θ revealed crystallin selenium nanoparticles, the size was in the average of 18-50 nm. Furthermore, FTIR revealed the presence of functional groups of the plant which act as stabilizing and reducing agents. In conclusion, the aqueous black currant extract can act as a reducing and capping agent to synthesize BCSeNPs in nano-scale size by a simple method
Reaction of,2- [( 4- amio phenyl ) diazenyl] 1,3,4- thiadiazole -5- thiol (S1) with p- chlorobenzeldehyde,3,4 – dimethoxy benzaldehyde and pyrrol-2- carbonxaldehyde gave -5- [{4-(4-chlorobenzylidene amino) phenyl} diezenyl]-1,3,4- thiadiazole-2- thiol (S2),5-[{ 4-[(3,4- dimethoxybenzyldene )amino phenyl ] diazenyl)-1,3,4- thiadiazole-2-thiol,(S3) and -5- [4-(1,H – pyrrol -2- yl- methylene)amino phenyl] diazenyl)-1,3,4- thiadiazole-2- thiol (S4) respectively as schiff's bases compounds. On the same route-2-[(4-amino-1- naphthyl ) diazenyl] -1,3,4- thiadiazole -5- thiol (S5) reacts with –p- chloro benzaldehyde and –m- nitrobenzaldehyde to give the follwing schiff's bases -5-[{ 4-(4- chloro benzylidene ) amino -1- naphthyl} diazenyl]
... Show MoreIn the present study waste aluminium cans were recycled and converted to produce alumina catalyst. These cans contain more than 98% aluminum oxide in their structure and were successfully synthesized to produce nano sized gamma alumina under mild conditions. A comprehensive study was carried out in order to examine the effect of several important parameters on maximum yield of alumina that can be produced. These parameters were reactants mole ratios (1.5, 1.5, 2, 3, 4 and 5), sodium hydroxide concentrations (10, 20, 30, 40, 50 and 55%) and weights of aluminum cans (2, 4, 6, 8 and 10 g). The compositions of alumina solution were determined by Atomic absorption spectroscopy (AAS); and maximum yield of alumina solution was 96.3% obtain
... Show Moren this work, a series of new nucleoside analogues (β-glucose liked to pyrazoline moiety) was synthesized. In the beginning, chalcone [1-3] was formed from the reaction of acetophenone and benzaldehyde derivatives in the presence of sodium hydroxide. Pyrazolines [4-6] were obtained from the reaction of the prepared chalcones and hydrazine hydrate in the presence of ethanol absolute. These pyrazolines were treated with β-glucose pentaacetate to afford a series of desirable protected nucleoside analogues [8-10]. After that hydrolysis of protected nuclioside analogues in sodium methoxide gave free nucleoside analogues [11-13]. These new formed compounds were diagnosed by 13C-NMR and 1H- NMR for some of them and FT-IR spectroscopy.
In this work 5-methylene-yl - (2-methy –oxazole-4-one) (1H) imidazole (1) were synthesized from the reaction of L-Histidine with acetic anhydride and which converted to the of 5-methylene-yl-(2-methyl 3-amino imidazole-4-one)-1H-imidazole (2) by reaction with hydrazine hydrate. Schiff bases (3-6) were synthesized from the reaction of compound (2) with different aromatic aldehyde. Reaction of compounds (3-6) with chloroacetyl chloride gives azetidinone one derivatives (7-10). These compounds were characterized by FT-IR and some of them with 1H-NMR and 13C-NMR spectroscopy.
Levofloxacin belongs to the fluoroquinolone family; it is a potent broad-spectrum bactericidal agent. The pharmacophore required for significant antibacterial activity is the C-3 carboxylic acid group and the 4-pyridine ring with the C-4 carbonyl group, into which binding to the DNA bases occur. In this work, we tried to show that by masking the carboxyl group through amide formation using certain amines to form levofloxacin carboxamides, an interesting activity is kept. Levofloxacin carboxamides on the C-3 group were prepared, followed by the formation of their copper complexes. The target compounds were characterized by FT-IR, elemental analysis. The antimicrobial activity of the target compounds was evaluated and showed satisfactory resu
... Show MoreThis work is focused on studying the effect of liquid layer level (height above a target material) on zinc oxide nanoparticles (ZnO and ZnO2) production using liquid-phase pulsed laser ablation (LP-PLA) technique. A plate of Zn metal inside different heights of an aqueous environment of cetyl trimethyl ammonium bromide (CTAB) with molarity (10-3 M) was irradiated with femtosecond pulses. The effect of liquid layer height on the optical properties and structure of ZnO was studied and characterized through UV-visible absorption test at three peaks at 213 nm, 216 nm and 218 nm for three liquid heights 4, 6 and 8 mm respectively. The obtained results of UV–visible spectra test show a blue shift accomp
... Show More2,2'-(1-(3,4-bis(carboxydichloromethoxy)-5-oxo-2,5-dihydrofuran-2-yl)ethane-1,2-diyl)bis(oxy)bis(2,2-dichloroacetic acid) a derivative of L-ascorbic acid was prepared by reaction of L-ascorbic acid with trichloroacetic acid (1:4) ratio, in the presence of potassium hydroxide. A series of new metal complexes of this ligand were prepared by a reaction with the chlorides of Cd(II), Co(II), Ni(II), Cu(II) and Zn(II). The new ligand and its complexes were identified by C.H.N., IR, UV-visible spectra, Thermogravimetric analysis (TGA), as well as 1H, 13C-NMR and Mass spectra for ligand L. The complexes were also identified by molar conductance, atomic absorption, magnetic susceptibility and X-ray diffraction for Cu (II) complex. FT-IR spectra
... Show MoreNew complexes of the [M(Ura)(Phen)(OH2)Cl2]Cl.2H2O type, where (Ura) uracil ; (Phen) 1,10-phenanthroline hydrate; M (Cr+3 , Fe+3 and La+3) were synthesized from mix ligand and characterized . These complexes have been characterized by the elemental micro analysis, spectral (FT-IR., UV-Vis, 1HNMR, 13CNMR and Mass) and magnetic susceptibility as well the molar conductive mensuration. Cr+3, Fe+3 and La+3- complexes of six–coordinated were proposed for the insulated for three metal(III) complexes for molecular formulas following into uracil property and 1,10-phenanthroline hydrate present . The proposed molecular structure for all metal (III) complexes is octahedral geometries .The biological activity was tested of metal(III) salts, liga
... Show MoreNew complexes of the [M(Ura)(Phen)(OH2)Cl2]Cl.2H2O type, where (Ura) uracil ; (Phen) 1,10-phenanthroline hydrate; M (Cr+3 , Fe+3 and La+3) were synthesized from mix ligand and characterized . These complexes have been characterized by the elemental micro analysis, spectral (FT-IR., UV-Vis, 1HNMR, 13CNMR and Mass) and magnetic susceptibility as well the molar conductive mensuration. Cr+3, Fe+3 and La+3- complexes of six–coordinated were proposed for the insulated for three metal(III) complexes for molecular formulas following into uracil property and 1,10-phenanthroline hydrate present . The proposed molecular structure for all metal (III) complexes is octahedral geometries .The biological activity was tested of metal(III) salts, ligands
... Show More