Refrigerant R134a has been widely utilized in automotive air conditioning systems (AACSs); R134a has a high global warming potential (GWP) of 1430 despite having zero ozone depletion potential (ODP). Coming refrigeration systems must include refrigerants with low GWP and zero ODP. The aim of this experimental study is to evaluate the thermal performance of an (AAC) with different values of compressor speeds, i.e., (1000, 1700, and 2400 rpm) and two thermal loads, i.e., (500 and 1000 Watt) with the absence and presence of liquid suction heat exchanger (LSHX) using R134a. The results showed that adding LSHX enhanced the COP cycle by 7.18%, 10.7%, and 3.09% for the first, second, and third speed, respectively, at 500 Watt, while the enhancements were 10.27 %, 23.3 %, and 11.5 % for the first, second, and third speed, respectively, at 1000 Watt. Increasing the compressor speed decreased COP due to a reduction in RE and increased the compression effect, increasing the work done by the motor on the compressor that caused a reduction in COP. The compressor exergy destruction (X des. Comp.) decreased when LSHX was added by 6.13%, 2.22%, and 18.8% for the first, second, and third speed, respectively. However, X des. comp. increased with compressor speed due to the system’s pressure difference rise because of decreasing evaporation and increasing condensation pressures. As a result, the entropy generation increased. The increase in discharge temperature and pressure of the compressor led to a high friction force between the moving part of the compressor and the refrigerant, so the energy losses increased. Increasing the compressor speed decreased the total exergy performance of the cycle by 5.8 %, 7.5 %, and 16.7 % for the first, second, and third speed, respectively, due to increasing the compressor discharge temperature, increasing the X des. comp. and thermostatic expansion device and decreasing condenser and evaporator. Increasing X des. comp was higher than the destruction in the condenser and evaporator, which canceled the effect of others, so the total exergy performance of the cycle decreased.
Phase change materials (PCMs) such as paraffin wax can be used to store or release large amount of energy at certain temperature at which their solid-liquid phase changes occurs. Paraffin wax that used in latent heat thermal energy storage (LHTES) has low thermal conductivity. In this study, the thermal conductivity of paraffin wax has been enhanced by adding different mass concentration (1wt.%, 3wt.%, 5wt.%) of (TiO2) nano-particles with about (10nm) diameter. It is found that the phase change temperature varies with adding (TiO2) nanoparticles in to the paraffin wax. The thermal conductivity of the composites is found to decrease with increasing temperature. The increase in thermal conductivity ha
... Show MoreAlmost all thermal systems utilize some type of heat exchanger. In a lot of cases, evaporators are important for systems like organic Rankine cycle systems. Evaporators give a share in a large portion of the capital cost, and their cost is significantly attached to their size or transfer area. Open-cell metal foams with high porosity are taken into consideration to enhance thermal performance without increase the size of heat exchangers. Numerous researchers have tried to find a representation of the temperature distribution closer to reality due to the different properties between the liquid and solid phases. Evaporation heat transfer in an annular pipe of double pipe heat exchanger (DPHEX) filled with cooper foam is investigated numerical
... Show MoreABSTRACT Background: This study measured the effects of three parameters pH value, length of immersion and type of archwire on metal ions released from orthodontic appliances. Materials and Methods: Ninety maxillary halves simulated fixed orthodontic appliances that were immersed in artificial saliva of different pH values (6.75, 5 and 3.5) during 28 day period. Three types of archwires were used: stainless steel, nickel titanium and thermal activated nickel titanium. The quantity of nickel and chromium ions was determined with the use of atomic force spectrophotometer while iron ions by spectrophotometer. Each orthodontic set was weighted two times, before the ligation and immersion in the artificial saliva and after 28 days at the end of
... Show MoreNatural convection heat transfer is experimentally investigated for laminar air flow in a vertical circular tube by using the boundary condition of constant wall heat flux in the ranges of (RaL) from (1.1*109) to (4.7*109). The experimental set-up was designed for determining the effect of different types of restrictions placed at entry of heated tube in bottom position, on the surface temperature distribution and on the local and average heat transfer coefficients. The apparatus was made with an electrically heated cylinder of a length (900mm) and diameter (30mm). The entry restrictions were included a circular tube of same diameter as the heated cylinder but with lengths of (60cm, 120cm), sharp-edge and
... Show MoreThere are significant differences between the pre and post-tests in favor of the post-test in the tests) stroke volume (S.V), cardiac thrust (C.O.P), left ventricular volume, maximum oxygen consumption Vo2max), which indicates the effect of the proposed training approach.There are significant differences between the pre and post-tests in favor of the post-test in the achievement level test with air rifle shooting for young female shooters, which indicates the effect of the proposed training curriculum.There are no significant differences between the pre and post-tests in the tests (heart rate (HR) before exercise, heart rate (HR) after exercise, systolic blood pressure rate before exercise, systolic blood pressure rate after exercis
... Show More The purpose of this research is to investigate the effects of rotation on heat transfer using
inclination magnetohydrodynamics for a couple-stress fluid in a non-uniform canal. When the
Reynolds number is low and the wavelength is long, math formulas are used to describe the stream
function, as well as the gradient of pressure, temperature, pressure rise and axial velocity per
wavelength, which have been calculated analytically. The many parameters in the current model
are assigned a definite set of values. It has been noticed that both the pressure rise and the pressure
gradient decrease with the rise of the rotation and couple stress, while they increase with an
increase in viscosity and Hartmann nu
In this paper, an experimental analysis of conventional air-cooled and microchannel condensers in automotive vapor compression refrigeration cycle concerning heat transfer coefficient and energy using R134a as a refrigerant was presented. The performance of two condensers and cycles tested regarding ambient temperature which it was varied from 40oC to 65oC, while the indoor temperature and load have been set to be 23oC and 2200 W respectively. Results showed that the microchannel condenser has 224 % and 77 % higher refrigerant side and air side heat transfer coefficient respectively than the coefficients of the conventional condenser. Thus, the COP, in case of using the microchannel
... Show MoreThe aim of this work is oriented to increase film cooling effectiveness value through numerical investigations for flow of Mach number not more than 0.3 around vane surface, to find the effects of inclination and compounds angles of round holes in staggered rows on adiabatic film cooling effectiveness of vane suction side. Multi cylindrical film cooling hole cases were studied with pitch ratio P/d =2 and 3, local blowing ratios M=0.382, 0.77 and 1.14, inclination angles a=30° and 45°, compound angles β= 0°, 15°, 30° and 45° and local momentum ratios I= 0.084, 0.34 and 0.756 for better cooling process.
A numerica
... Show More