Wireless Body Area Sensor Network (WBASN) is gaining significant attention due to its applications in smart health offering cost-effective, efficient, ubiquitous, and unobtrusive telemedicine. WBASNs face challenges including interference, Quality of Service, transmit power, and resource constraints. Recognizing these challenges, this paper presents an energy and Quality of Service-aware routing algorithm. The proposed algorithm is based on each node's Collaboratively Evaluated Value (CEV) to select the most suitable cluster head (CH). The Collaborative Value (CV) is derived from three factors, the node's residual energy, the distance vector between nodes and personal device, and the sensor's density in each CH. The CEV algorithm operates in the following manner: CHs are dynamically selected in each transmission round based on the nodes' CVs. The algorithm considered the patient's condition classification to guarantee safety and attain a response speed appropriate for their current state. So, data is categorized into Very-Critical, Critical, and Normal data classes using the supervised learning vector quantization (LVQ) classifier. Very Critical data is sent to the emergency center to dispatch an ambulance, Critical data is transmitted to a doctor, and Normal data is sent to a data center. This methodology promotes efficient and reliable intra-network communication, ensuring prompt and precise data transmission, and reducing frequent recharging. Comparative analyses reveal that the proposed algorithm outperforms ERRS (Energy-Efficient and Reliable Routing Scheme) and LEACH (low energy adaptive clustering hierarchy) regarding network longevity by 27% and 33%, augmenting network stability by 12% and 45% over the aforementioned protocols, respectively. The performance was conducted in OMNeT++ simulator
The quality of groundwater in the Al-Hawija area was assessed using a water quality index. Data of nine physico-chemical parameters of 28 groundwater wells were used to calculate the water quality index (WQI). A heterogeneous water quality was reported, where in close proximity to the Lesser Zab River (LZR), it has low WQI values and permissible for human consumptions due to the dilution processes by fresh water; whereas, it becomes deteriorated in areas located far away the river. The values of WQI ranges from 22 to 336, indicating a good to very poor groundwater quality.
In this work we present a technique to extract the heart contours from noisy echocardiograph images. Our technique is based on improving the image before applying contours detection to reduce heavy noise and get better image quality. To perform that, we combine many pre-processing techniques (filtering, morphological operations, and contrast adjustment) to avoid unclear edges and enhance low contrast of echocardiograph images, after implementing these techniques we can get legible detection for heart boundaries and valves movement by traditional edge detection methods.
In this paper, a fast lossless image compression method is introduced for compressing medical images, it is based on splitting the image blocks according to its nature along with using the polynomial approximation to decompose image signal followed by applying run length coding on the residue part of the image, which represents the error caused by applying polynomial approximation. Then, Huffman coding is applied as a last stage to encode the polynomial coefficients and run length coding. The test results indicate that the suggested method can lead to promising performance.
Starting from 4, - Dimercaptobiphenyl, a variety of phenolic Schiff bases (methylolic, etheric, epoxy) derivatives have been synthesized. All proposed structure were supported by FTIR, 1H-NMR, 13C-NMR Elemental analysis all analysis were performed in center of consultation in Jordan Universty.
Features is the description of the image contents which could be corner, blob or edge. Corners are one of the most important feature to describe image, therefore there are many algorithms to detect corners such as Harris, FAST, SUSAN, etc. Harris is a method for corner detection and it is an efficient and accurate feature detection method. Harris corner detection is rotation invariant but it isn’t scale invariant. This paper presents an efficient harris corner detector invariant to scale, this improvement done by using gaussian function with different scales. The experimental results illustrate that it is very useful to use Gaussian linear equation to deal with harris weakness.
In this work Laser wireless video communication system using intensity modualtion direct
detection IM/DD over a 1 km range between transmitter and receiver is experimentally investigated and
demonstrated. Beam expander and beam collimeter were implemented to collimete laser beam at the
transmitter and focus this beam at the receiver respectively. The results show that IM/DD communication
sysatem using laser diode is quite attractive for transmitting video signal. In this work signal to noise
ratio (S/N) higher than 20 dB is achieved in this work.
thirty adult NewZealand rabbits used in this study, they were divided in to two groups (control and treaded with Helium — Neon laser). A square skin flap done on the medial aspect of the auricle of both sides, a square piece of cartilage incised, pealed out from each auricle and fixed in the site of the other, then the flaps sutured .The site of the operation in the rabbits of the treated group were irradiated using a Helium —Neon laser with (5mw) power for (10 days) began after the operation directly, (3 rabbits) from each group used for collection of specimens for histopathological examination at the weeks (1,2,3,4, & 6) weeks post the operation .The results revealed Early invasion of the matrix with elastic fibers which continue to t
... Show MoreDue to the easily access to the satellite images, Google Earth (GE) images have become more popular than other online virtual globes. However, the popularity of GE is not an indication of its accuracy. A considerable amount of literature has been published on evaluating the positional accuracy of GE data; however there are few studies which have investigated the subject of improving the GE accuracy. In this paper, a practical method for enhancing the horizontal positional accuracy of GE is suggested by establishing ten reference points, in University of Baghdad main campus, using different Global Navigation Satellite System (GNSS) observation techniques: Rapid Static, Post-Processing Kinematic, and Network. Then, the GE image for the study
... Show More