Wireless Body Area Sensor Network (WBASN) is gaining significant attention due to its applications in smart health offering cost-effective, efficient, ubiquitous, and unobtrusive telemedicine. WBASNs face challenges including interference, Quality of Service, transmit power, and resource constraints. Recognizing these challenges, this paper presents an energy and Quality of Service-aware routing algorithm. The proposed algorithm is based on each node's Collaboratively Evaluated Value (CEV) to select the most suitable cluster head (CH). The Collaborative Value (CV) is derived from three factors, the node's residual energy, the distance vector between nodes and personal device, and the sensor's density in each CH. The CEV algorithm operates in the following manner: CHs are dynamically selected in each transmission round based on the nodes' CVs. The algorithm considered the patient's condition classification to guarantee safety and attain a response speed appropriate for their current state. So, data is categorized into Very-Critical, Critical, and Normal data classes using the supervised learning vector quantization (LVQ) classifier. Very Critical data is sent to the emergency center to dispatch an ambulance, Critical data is transmitted to a doctor, and Normal data is sent to a data center. This methodology promotes efficient and reliable intra-network communication, ensuring prompt and precise data transmission, and reducing frequent recharging. Comparative analyses reveal that the proposed algorithm outperforms ERRS (Energy-Efficient and Reliable Routing Scheme) and LEACH (low energy adaptive clustering hierarchy) regarding network longevity by 27% and 33%, augmenting network stability by 12% and 45% over the aforementioned protocols, respectively. The performance was conducted in OMNeT++ simulator
The beet armyworm (BAW), Spodoptera exigua (Lepidoptera: Noctuidae) is a highly destructive pest of vegetables and field crops. Management of beet armyworm primarily relies on synthetic pesticides, which is threatening the beneficial community and environment. Most importantly, the BAW developed resistance to synthetic pesticides with making it difficult to manage. Therefore, alternative and environment-friendly pest management tactics are urgently required. The use of pesticidal plant extracts provides an effective way for a sustainable pest management program. To evaluate the use of pesticidal plant extracts against BAW, we selected six plant species (Lantana camara, Aloe vera, Azadirachta indica, Cymbopogon citratus, Nicotiana tabacum ,
... Show MoreCD40 is a type 1 transmembrane protein composed of 277 amino acids, and it belongs to the tumor necrosis factor receptor (TNFR) superfamily. It is expressed in a variety of cell types, including normal B cells, macrophages, dendritic cells, and endothelial cells, as a costimulatory molecule. This study aims to summarize the CD40 polymorphism effect and its susceptibility to immune-related disorders. The CD40 gene polymorphisms showed a significant association with different immune-related disorders and act as a risk factor for increased susceptibility to these diseases.
Background: Decontamination of gutta percha cones was important factor for success of root canal treatment. The aim of the present in vitro study was to identify and to compare the antimicrobial effect of following disinfection solutions: 0.2% chlorhexidine gluconate, Iodine, tetracycline hydrochloride solution, EDTA & formocresol mixed with zinc oxide eugenol, on E faecalis, E coli and Candida albicans using sensitivity test Materials and Methods: Three types of microorganisms were isolated from infected root canals (E faecalis, E coli and Candida albicans) and cultured on Mueller Hinton agar petri-dishes. Disinfection of gutta percha cones done by immersion in six disinfection solutions (six groups), the groups are: distill water (used a
... Show MoreIn this paper a system is designed and implemented using a Field Programmable Gate Array (FPGA) to move objects from a pick up location to a delivery location. This transportation of objects is done via a vehicle equipped with a robot arm and an FPGA. The path between the two locations is followed by recognizing a black line between them. The black line is sensed by Infrared sensors (IR) located on the front and on the back of the vehicle. The Robot was successfully implemented by programming the Field Programmable Gate Array with the designed system that was described as a state diagram and the robot operated properly.