Wireless Body Area Sensor Network (WBASN) is gaining significant attention due to its applications in smart health offering cost-effective, efficient, ubiquitous, and unobtrusive telemedicine. WBASNs face challenges including interference, Quality of Service, transmit power, and resource constraints. Recognizing these challenges, this paper presents an energy and Quality of Service-aware routing algorithm. The proposed algorithm is based on each node's Collaboratively Evaluated Value (CEV) to select the most suitable cluster head (CH). The Collaborative Value (CV) is derived from three factors, the node's residual energy, the distance vector between nodes and personal device, and the sensor's density in each CH. The CEV algorithm operates in the following manner: CHs are dynamically selected in each transmission round based on the nodes' CVs. The algorithm considered the patient's condition classification to guarantee safety and attain a response speed appropriate for their current state. So, data is categorized into Very-Critical, Critical, and Normal data classes using the supervised learning vector quantization (LVQ) classifier. Very Critical data is sent to the emergency center to dispatch an ambulance, Critical data is transmitted to a doctor, and Normal data is sent to a data center. This methodology promotes efficient and reliable intra-network communication, ensuring prompt and precise data transmission, and reducing frequent recharging. Comparative analyses reveal that the proposed algorithm outperforms ERRS (Energy-Efficient and Reliable Routing Scheme) and LEACH (low energy adaptive clustering hierarchy) regarding network longevity by 27% and 33%, augmenting network stability by 12% and 45% over the aforementioned protocols, respectively. The performance was conducted in OMNeT++ simulator
In this paper, a cognitive system based on a nonlinear neural controller and intelligent algorithm that will guide an autonomous mobile robot during continuous path-tracking and navigate over solid obstacles with avoidance was proposed. The goal of the proposed structure is to plan and track the reference path equation for the autonomous mobile robot in the mining environment to avoid the obstacles and reach to the target position by using intelligent optimization algorithms. Particle Swarm Optimization (PSO) and Artificial Bee Colony (ABC) Algorithms are used to finding the solutions of the mobile robot navigation problems in the mine by searching the optimal paths and finding the reference path equation of the optimal
... Show MoreIn this paper, a miniaturized 2 × 2 electro-optic plasmonic Mach– Zehnder switch (MZS) based on metal–polymer–silicon hybrid waveguide is presented. Adiabatic tapers are designed to couple the light between the plasmonic phase shifter, implemented in each of the MZS arms, and the 3-dB input/output directional couplers. For 6 µm-long hybrid plasmonic waveguide supported by JRD1 polymer (r33= 390 pm/V), a π-phase shift voltage of 2 V is obtained. The switch is designed for 1550 nm operation wavelength using COMSOL software and characterizes by 2.3 dB insertion loss, 9.9 fJ/bit power consumption, and 640 GHz operation bandwidth
Present study was conducted to evaluate the different levels of energy to protein ratios (EPR) using food waste and black soldier fly larvae meal (FWBSFL) on growth performance and nutrient digestibility of broilers. A total of 160 one-day old broiler chicks were divided randomly to four groups and each group had 8 replicates with 5 chicks per replicate. The control diet was formulated using conventional feed ingredients with EPR of 154 for the starter period and 167 for the finisher period. The other treatments were diets with normal, low, and high EPR (154,143, and 166 for the starter period; 167, 155, and 177 for the finisher period) using FWBSFL. Feed consumption and body weight gain as well as digestibility of crude protein, cr
... Show MoreEmulsion Liquid Membrane (ELM) is an emerging technology that removes contaminants from water and industrial wastewater. This study investigated the stability and extraction efficiency of ELM for the removal of Chlorpyrifos Pesticide (CP) from wastewater. The stability was studied in terms of emulsion breakage. The proposed ELM included n-hexane as a diluent, span-80 as a surfactant, and hydrochloric acid (HCl) as a stripping agent. Parameters such as mixing speed, aqueous feed solution pH, internal-to-organic membrane volume ratio, and external-to-emulsion volume ratio were investigated. A minimum emulsion breakage of 0.66% coupled with a maximum chlorpyrifos extraction and stripping efficiency were achieved at 96.1% and 95.7% at b
... Show MoreThe researches discusses the style of acting used by (Sami Abdul-Hameed) in one of the play director (Salah AL-Kassab) production whine he called; Picturesque.
The problem of this research is to discover the differences between the performance of (Sami Abdul-Hameed) in the Picturesque Theatre and the other theatre.
The goal of the research is to get to know the style of acting used in (king Lear) directed by (Salah AL-Kassab).
After defining the term (picturesque theatre), the researcher discusses the elements of the Visual theatre and the components of the stage picture according to (Alexander Dean) and he refers to those well-known director who had emphasized the Visual elements. Such as (Gordon Grieg) and (Franco Zeferrel
Amputation of the upper limb significantly hinders the ability of patients to perform activities of daily living. To address this challenge, this paper introduces a novel approach that combines non-invasive methods, specifically Electroencephalography (EEG) and Electromyography (EMG) signals, with advanced machine learning techniques to recognize upper limb movements. The objective is to improve the control and functionality of prosthetic upper limbs through effective pattern recognition. The proposed methodology involves the fusion of EMG and EEG signals, which are processed using time-frequency domain feature extraction techniques. This enables the classification of seven distinct hand and wrist movements. The experiments conducte
... Show MoreA field study aimed to improve administrative performance of the Heads of Departments in Wasit University in light of the administrative functions, a questionnaire constructed was c of 38 items, as have been applied during the academic year 2014/2015 to a group of experts from the deans and assistants, professors and heads of departments using the Delphi method by two rounds the adoption rate of 90% and an agreement was numbered 30 experts and study reached important results have been analyzed and discussed according to fields of study, a planning, organization and direction.
Face recognition, emotion recognition represent the important bases for the human machine interaction. To recognize the person’s emotion and face, different algorithms are developed and tested. In this paper, an enhancement face and emotion recognition algorithm is implemented based on deep learning neural networks. Universal database and personal image had been used to test the proposed algorithm. Python language programming had been used to implement the proposed algorithm.
In data mining, classification is a form of data analysis that can be used to extract models describing important data classes. Two of the well known algorithms used in data mining classification are Backpropagation Neural Network (BNN) and Naïve Bayesian (NB). This paper investigates the performance of these two classification methods using the Car Evaluation dataset. Two models were built for both algorithms and the results were compared. Our experimental results indicated that the BNN classifier yield higher accuracy as compared to the NB classifier but it is less efficient because it is time-consuming and difficult to analyze due to its black-box implementation.