The research included the preparation of cyclic compounds from thiazoles, imidazoles and oxazepines from the reaction of cyclization starting material that acts Schiff bases, which is a raw material in the formation of cyclic compounds from Schiff's(B1) by reaction of 4- aminobenzenesulfonylamide with 4-hydroxyacetophenone which can used to synthesized two lines. The first introducing the preparation of pyrazoles [B4, B5] from ester [B2], which derived to acid hydrazide[B3] with hydrazine hydrate and final pyrazoles obtained by the reaction with diethylmalonate and acetylacetone. The second including prepared the new 1,3-oxazepine1,5-dione derivatives[B6,B7,B8] from adding different anhydrides to the base[B1] as a seven membered ring ; tetrazole[B9]and thiazolidinone [B10] were synthesized from add sodium azide and thioglycolic acid to the same [B1] as a five members ring ; pyrimidine[B12,B13] were results after the reaction of azomthine moiety with acetyl chloride[B11]and then urea and thiourea to obtaine the [B12,B13] derivatives contain the 4,6-dion as a six members ring. These compounds were identified by using several analytical techniques such as FT- IR, 1HNMR, TLC, and 13CNMR. The biological activity of some compounds against four types of bacteria including staphylococcus aureus, bacillus subtilis (gram-positive) and E. coli, pseudomonas aeruginosa (gram-negative) and one type of fungal Candida albicans was examined and the results of the biological activity were compared with antibiotics (Ampicillin)
The New Schiff base ligand 4,4'-[(1,1'-Biphenyl)-4,4'-diyl,bis-(azo)-bis-[2-Salicylidene thiosemicarbazide](HL)(BASTSC)and its complexes with Co(II), Ni(II), and Cu(II) were prepared and characterized by elemental analysis, electronic, FTIR, magnetic susceptibility measurements. The analytical and spectral data showed, the stiochiometry of the complexes to be 1:1 (metal: ligand). FTIR spectral data showed that the ligand behaves as dibasic hexadentate molecule with (N, S, O) donor sequence towards metal ions. The octahedral geometry for Co(II), Ni(II), and Cu(II) complexes and non electrolyte behavior was suggested according to the analysis data.
The present paper describes the synthesis and structural studies of new transition metal complexes of cobalt(II), nickel(II), copper(II) and cadmium(II) with two bi dentate ligands derived from quinoxaline-2,3-dione. The two ligands were fully identified by elemental analyses, FT-IR, NMR and UV-Visible spectra. The metal complexes of Co(II), Ni(II), Cu(II) and Cd(II) were isolated in the solid state after reactions of their metal chlorides with the ligands in 2:1 mole ratio. The isolated solid metal complexes were characterized with the help of elemental analyses, NMR, FT-IR and UV-Visible spectra. As well as the thermal stability of the coordinated quinoxaline polymers were tested by TG-DSC analysis and it is found th
... Show MoreTransition metal complexes of Y(III), La(III) and Rh(III) with azo dye 2,4-dimethyl-6- (4-nitro-phenylazo)-phenol derived from 4-nitroaniline and 2,4-dimethylphenol were synthesized. Characterization of these compounds has been done on the basis of elemental analysis, electronic data, FT-IR,UV-Vis and 1HNMR, as well as conductivity measurements. The nature of the complexes formed were studies following the mole ratio and continuous variation methods, Beer's law obeyed over a concentration range (1x10-4- 3x10-4). High molar absorbtivity of the complex solutions were observed. From the analytical data, the stoichiomerty of the complexes has been found to be 1:3 (Metal:ligand). On the basis of Physicochemical data octahedral geometries were as
... Show MoreTransition metal complexes of Y(III), La(III) and Rh(III) with azo dye 2,4-dimethyl-6(4-nitro-phenylazo)-phenol derived from 4-nitroaniline and 2,4-dimethylphenol were synthesized. Characterization of these compounds has been done on the basis of elemental analysis, electronic data, FT-IR,UV-Vis and 1HNMR, as well as conductivity measurements. The nature of the complexes formed were studies following the mole ratio and continuous variation methods, Beer's law obeyed over a concentration range (1x10-4- 3x10-4). High molar absorbtivity of the complex solutions were observed. From the analytical data, the stoichiomerty of the complexes has been found to be 1:3 (Metal:ligand). On the basis of Physicochemical data octahedral geometries were a
... Show MoreA new series of metal ions complexes of VO(II), Cr(III), Mn(II), Zn(II), Cd(II) and Ce(III) have been synthesized from the Schiff bases (4-chlorobenzylidene)-urea amine (L1) and (4-bromobenzylidene)-urea amine (L2). Structural features were obtained from their elemental microanalyses, magnetic susceptibility, molar conductance, FT-IR, UV–Vis, LC-Mass and 1HNMR spectral studies. The UV–Vis, magnetic susceptibility and molar conductance data of the complexes suggest a tetrahedral geometry around the central metal ion except, VOII complexes that has square pyramidal geometry, but CrIII and CeIII octahedral geometry. The biological activity for the ligand (L1) and its Vanadium and Cadmium complexes were studied. Structural geometries of com
... Show MoreThis study outlines the synthesis of substituted 1,2,4-triazole derivatives through the cyclization reaction of thiourea derivatives. The process begins with the reaction of different halides with KSCN to produce isothiocyanate derivatives. then followed by a reaction with isonicotinic acid hydrazide to yield thioureas (1-6), with a yield rate of (72-88%). Then, compounds (1-6) were treated with alkaline medium 4 N (NaOH) to produced 1,2,4-triazole derivatives (7-12) with a yield (51-69%).The structure of the prepared compounds was characterized using FTIR,1HNMR and 13CNMR spectroscopy. Some of the synthesized compounds were tested for antimicrobial activity when, compound 9 showed strong activity against gram positive bacteria (Sta
... Show More