N-type Tin dioxide thin films with thickness (350 nm) prepared by thermal evaporation method. The thin film SnO2 was doped with Ag by the rate (0.01, 0.02 and 0.03). Atomic Force Microscopic (AFM) was adopted to determine the grain size and roughness of the film surface. The electrical properties were determined by mean of Hall Measurement system and mobility was calculated. SnO2: Ag/P–Si photodetectors demonstration the highest described visible responsivity of (0.287 A/W) with the Ag ratio of (0.03). I–V characteristics with different power density were measured. The best sensitive value of the spectral response, specific detectivity and quantum efficiency at wavelength (422 nm).
The primary purpose of this paper is to introduce the, N-coprobabilistic normed space, coprobabilistic dual space of N-coprobabilistic normed space and give some facts that are related of them.
Nanostructured photodetectors have garnered great attention due to their enriched electronic and optical properties. In this work, we aim to fabricate a high-performance CeO2/Si photodetector by growing a CeO2 nanostructure film on a silicon substrate using the pulsed laser deposition (PLD) technique at different laser energy densities. The impact of laser energy density and the number of pulses on the morphological, optical, and electrical properties was studied. Field emission scanning electron microscopy (FESEM) results show that the CeO2 film has a spherical grain morphology with an average grain size ranging from 33 to 54 nm, depending on the laser energy density. The film deposited at various numbers of laser pulses also has spherical
... Show MoreThin films of pure polycarbonate (PC) with anthracene doping PC films for different doping ratios (10, 20, 30, 40, 50 and 60 ml) were prepared by using a casting method. The influence of anthracene doping ratio on photo-fries rearrangement of polycarbonate was systematic investigated. Furthermore, pure PC and anthracene doping PC films were irradiated via UV light at a wavelength (254 nm) for different periods (5, 240, 288, and 360 hrs). The photo-fries rearrangement occurring in pure PC and anthracene doping PC films were monitored using UV and FTIR spectroscopies. The photo-fries rearrangement leads to scission the carbonate linkage and formation phenylsalicylate and dihydroxybenzophenes. The result of the UV spectrum confirms disappea
... Show MoreThis paper describes the synthesis of ?- Fe2O3 nanoparticles by sol-gel route using carboxylic acid(2-hydroxy benzoic acid) as gelatin media and its photo activity for degradation of cibacron red dye . Hematite samples are synthesized at different temperatures: 400, 500, 600, 700, 800 and 900 ?C at 700 ?C the ?-Fe2O3 nanoparticles are formed with particle size 71.93 nm. The nanoparticles are characterized by XRD , SEM, AFM and FTIR . The 0.046 g /l of the catalyst sample shows high photo activity at 3x10-5M dye concentration in acidic medium at pH 3.
Cholinesterases are among the most efficient enzymes known. They are divided into two groups: acetylcholinesterase (AChE) involved in the hydrolysis of the neurotransimitter acetylcholine, and butyrylcholinesterase (BChE) of unknown function. Several crystal structures of the former have shown that the active site is located at the bottom of a deep and narrow gorge. Human BChE has attracted attention because it can hydrolyze toxic esters and nerve agents. Here we analyze the complexes of cholinesterase with soman by describing the 3D geometry of the complex, the active site, the changes happened through the inhibition and provide a description for the mechanism of inhibition. Soman undergoes degradation in the active site of the AChE and B
... Show More