This paper presents an experimental and theoretical analysis to investigate the two-phase flow boiling heat transfer coefficient and pressure drop of the refrigerant R-134a in the evaporator test section of the refrigeration system under different operating conditions. The test conditions considered are, for heat flux (13.7-36.6) kW/m2, mass flux (52-105) kg/m2.s, vapor quality (0.2-1) and saturation temperature (-15 to -3.7) ˚C. Experiments were carried out using a test rig for a 310W capacity refrigeration system, which is designed and constructed in the current work. Investigating of the experimental results has revealed that, the enhancement in local heat trans
... Show MoreThis work examines numerically the effects of particle size, particle thermal conductivity and inlet velocity of forced convection heat transfer in uniformly heated packed duct. Four packing material (Aluminum, Alumina, Glass and Nylon) with range of thermal conductivity (from200 W/m.K for Aluminum to 0.23 W/m.K for Nylon), four particle diameters (1, 3, 5 and 7 cm), inlet velocity ( 0.07, 0.19 and 0.32 m/s) and constant heat flux ( 1000, 2000 and 3000 W/ m 2) were investigated. Results showed that heat transfer (average Nusselt number Nuav) increased with increasing packing conductivity; inlet velocity and heat flux, but decreased with increasing particle size.Also, Aluminum average Nusselt number is about (0.85,2.
... Show MoreA major disadvantage of dose reconstruction by means of thermoluminescence (TL) is the fact that during readout of any TL material exposed to ionizing radiation (i.e., during measuring the glow curve), the radiation-induced signal gets lost. Application of the photo-transferred thermoluminescence phenomenon (PTTL) may offer a solution to this problem. In PTTL, the residual signal that is not destroyed by conventional TL readout (because it comes from deeper electron traps) can be readout through simultaneous stimulation by UV light and heating, allowing to obtain information about the absorbed dose in a second run. The present paper describes the application of PTTL for emergency dose assessment. For
Been manufacturing detector Altosalih optical pattern contact metal semiconductor through deposition poles of aluminum metal on the chips of crystal cadmium Tleraad (CdTe) with directional [111] and growing with laboratory and annealed at a temperature 80c for 30 minutes and eat Study of some electrical properties nailed and scoutNmadj ??????? copper with non ??????? models to see effect Alichoab well research deals impact Alichoab and frequency detector resistance
SUMMARY. – Absorption, flourescence, quantum yield and lifetime of rhodamine B in chloroform, methanol and dimethyl sulfoxide were measured. A comparison was done of these quantities with those for solid solutions, which are obtained by mixing constant volume proportions of dye at a concentration of 1×10–4M/l with different volume proportions from the concentrated solution of polymer in chloroform and dimethyl sulfoxide. The results showed that the addition of polymer to liquid concentrated solutions (1×10–4M/l) of rhodamine B dye from expecting, which leads to development of active medium for laser dye at high concentration, increase the spectra shift toward high energies, and the luminescence quantum yield but decreasing radiative
... Show MoreAbstract Ternary Silver Indium selenide Sulfur AgInSe1.8S0.2 in pure form and with a 0.2 ratio of Sulfur were fabricated via thermal evaporation under vacuum 3*10-6 torr on glasses substrates with a thickness of (550) nm. These films were investigated to understand their structural, optical, and Hall Characteristics. X-ray diffraction analysis was employed to examine the impact of varying Sulfur ratios on the structural properties. The results revealed that the AgInSe1.8S0.2 thin films in their pure form and with a 0.2 Sulfur ratio, both at room temperature and after annealing at 500 K, exhibited a polycrystalline nature with a tetragonal structure and a predominant orientation along the (112) plane, indicating an enhanced de
... Show MoreThe n-type Au thin films of 500nm thickness was evaporated by thermal evaporation method on p-type silicon wafer of [111] direction to formed Au/Si heterojunction solar cell. The AC conductivity, C-V and I-V characteristics of fabricated c-Au/Si diffusion heterojunction-(HJ) solar cell, has been studied. The first methods demonstrated that the AC conductivity due to with diffusiontunneling mechanism, while the second show that, the heterojunction profile is abrupt, the heterojunction parameters have been played out, such as the depletion width, built-in voltage, and concentration. And finally the third one show that the c-Au/Si HJ has rectification properties, and the solar cell yielded an open circuit voltage of (Vic) 0.4V, short circuit c
... Show More