Monaural source separation is a challenging issue due to the fact that there is only a single channel available; however, there is an unlimited range of possible solutions. In this paper, a monaural source separation model based hybrid deep learning model, which consists of convolution neural network (CNN), dense neural network (DNN) and recurrent neural network (RNN), will be presented. A trial and error method will be used to optimize the number of layers in the proposed model. Moreover, the effects of the learning rate, optimization algorithms, and the number of epochs on the separation performance will be explored. Our model was evaluated using the MIR-1K dataset for singing voice separation. Moreover, the proposed approach achieves (4.81) dB GNSDR gain, (7.28) dB GSIR gain, and (3.39) dB GSAR gain in comparison to current approaches
The present study discusses the significant role of the historical memory in all the Spanish society aspects of life. When a novelist takes the role and puts on the mask of one of the novel’s protagonists or hidden characters, his memory of the events becomes the keywords of accessing the close-knit fabric of society and sheds lights on deteriorating social conceptions in a backwards social reality that rejects all new progressive ideas and modernity. Through concentrating on the society flawing aspects and employing everything of his stored memory, the author uses sarcasm to criticize and change such old deteriorating reality conceptions.
&nbs
... Show More