Preferred Language
Articles
/
YhbaFooBVTCNdQwCuZAN
Hybrid Deep Learning Model for Singing Voice Separation
...Show More Authors

Monaural source separation is a challenging issue due to the fact that there is only a single channel available; however, there is an unlimited range of possible solutions. In this paper, a monaural source separation model based hybrid deep learning model, which consists of convolution neural network (CNN), dense neural network (DNN) and recurrent neural network (RNN), will be presented. A trial and error method will be used to optimize the number of layers in the proposed model. Moreover, the effects of the learning rate, optimization algorithms, and the number of epochs on the separation performance will be explored. Our model was evaluated using the MIR-1K dataset for singing voice separation. Moreover, the proposed approach achieves (4.81) dB GNSDR gain, (7.28) dB GSIR gain, and (3.39) dB GSAR gain in comparison to current approaches

Scopus Crossref
View Publication
Publication Date
Tue Oct 23 2018
Journal Name
Journal Of Economics And Administrative Sciences
Compare some wavelet estimators for parameters in the linear regression model with errors follows ARFIMA model.
...Show More Authors

The aim of this research is to estimate the parameters of the linear regression model with errors following ARFIMA model by using wavelet method depending on maximum likelihood and approaching general least square as well as ordinary least square. We use the estimators in practical application on real data, which were the monthly data of Inflation and Dollar exchange rate obtained from the (CSO) Central Statistical organization for the period from 1/2005 to 12/2015. The results proved that (WML) was the most reliable and efficient from the other estimators, also the results provide that the changing of fractional difference parameter (d) doesn’t effect on the results.

View Publication Preview PDF
Crossref
Publication Date
Sat Feb 09 2019
Journal Name
Journal Of The College Of Education For Women
Hybrid Transform Based Denoising with Block Thresholding
...Show More Authors

A frequently used approach for denoising is the shrinkage of coefficients of the noisy signal representation in a transform domain. This paper proposes an algorithm based on hybrid transform (stationary wavelet transform proceeding by slantlet transform); The slantlet transform is applied to the approximation subband of the stationary wavelet transform. BlockShrink thresholding technique is applied to the hybrid transform coefficients. This technique can decide the optimal block size and thresholding for every wavelet subband by risk estimate (SURE). The proposed algorithm was executed by using MATLAB R2010aminimizing Stein’s unbiased with natural images contaminated by white Gaussian noise. Numerical results show that our algorithm co

... Show More
View Publication Preview PDF
Publication Date
Wed Jan 01 2020
Journal Name
International Journal Of Software & Hardware Research In Engineering
Frontal Facial Image Compression of Hybrid Base
...Show More Authors

Publication Date
Thu Aug 01 2019
Journal Name
International Journal Of Machine Learning And Computing
Emotion Recognition System Based on Hybrid Techniques
...Show More Authors

Emotion recognition has important applications in human-computer interaction. Various sources such as facial expressions and speech have been considered for interpreting human emotions. The aim of this paper is to develop an emotion recognition system from facial expressions and speech using a hybrid of machine-learning algorithms in order to enhance the overall performance of human computer communication. For facial emotion recognition, a deep convolutional neural network is used for feature extraction and classification, whereas for speech emotion recognition, the zero-crossing rate, mean, standard deviation and mel frequency cepstral coefficient features are extracted. The extracted features are then fed to a random forest classifier. In

... Show More
View Publication Preview PDF
Scopus (20)
Crossref (19)
Scopus Crossref
Publication Date
Sun Dec 01 2019
Journal Name
Computers And Electronics In Agriculture
Meteorological data mining and hybrid data-intelligence models for reference evaporation simulation: A case study in Iraq
...Show More Authors

View Publication
Crossref (110)
Crossref
Publication Date
Wed Jan 15 2020
Journal Name
Arab World English Journal
Posters in Vocabulary Learning
...Show More Authors

An essential element in English as a foreign language (EFL) learning is vocabulary. There is a big emphasis on learning the new words' meaning from the books or inside classrooms. Also, it is a major part of language teaching as well as being fundamental to the learner but there is a big challenge in vocabulary instruction due to the weak confidence by teachers in selecting the suitable practice in teaching vocabulary or they sometimes unable to specify a suitable time for it during the teaching process. The major aim of this study is to investigate the value of posters in vocabulary learning on the 2nd grade students at Halemat Alsaadia High School in Baghdad – Iraq. It hypothesized that there are no statistically significant differences

... Show More
View Publication Preview PDF
Clarivate Crossref
Publication Date
Sun Jan 22 2023
Journal Name
Mesopotamian Journal Of Big Data
Parallel Machine Learning Algorithms
...Show More Authors

 To expedite the learning process, a group of algorithms known as parallel machine learning algorithmscan be executed simultaneously on several computers or processors. As data grows in both size andcomplexity, and as businesses seek efficient ways to mine that data for insights, algorithms like thesewill become increasingly crucial. Data parallelism, model parallelism, and hybrid techniques are justsome of the methods described in this article for speeding up machine learning algorithms. We alsocover the benefits and threats associated with parallel machine learning, such as data splitting,communication, and scalability. We compare how well various methods perform on a variety ofmachine learning tasks and datasets, and we talk abo

... Show More
View Publication
Scopus (23)
Crossref (15)
Scopus Crossref
Publication Date
Tue Jun 01 2021
Journal Name
2021 Ieee/cvf Conference On Computer Vision And Pattern Recognition Workshops (cvprw)
Alps: Adaptive Quantization of Deep Neural Networks with GeneraLized PositS
...Show More Authors

View Publication
Scopus (12)
Crossref (12)
Scopus Clarivate Crossref
Publication Date
Tue Jun 23 2020
Journal Name
Baghdad Science Journal
Anomaly Detection Approach Based on Deep Neural Network and Dropout
...Show More Authors

   Regarding to the computer system security, the intrusion detection systems are fundamental components for discriminating attacks at the early stage. They monitor and analyze network traffics, looking for abnormal behaviors or attack signatures to detect intrusions in early time. However, many challenges arise while developing flexible and efficient network intrusion detection system (NIDS) for unforeseen attacks with high detection rate. In this paper, deep neural network (DNN) approach was proposed for anomaly detection NIDS. Dropout is the regularized technique used with DNN model to reduce the overfitting. The experimental results applied on NSL_KDD dataset. SoftMax output layer has been used with cross entropy loss funct

... Show More
View Publication Preview PDF
Scopus (25)
Crossref (11)
Scopus Clarivate Crossref
Publication Date
Fri Dec 30 2016
Journal Name
Al-kindy College Medical Journal
Deep Vein Thrombosis Predisposing Factors Analysis Using Association Rules Mining
...Show More Authors

Background: DVT is a very common problem with a very serious complications like pulmonary embolism (PE) which carries a high mortality,and many other chronic and annoying complications ( like chronic DVT, post-phlebitic syndrome, and chronic venous insufficiency) ,and it has many risk factors that affect its course, severity ,and response to treatment. Objectives: Most of those risk factors are modifiable, and a better understanding of the relationships between them can be beneficial for better assessment for liable pfatients , prevention of disease, and the effectiveness of our treatment modalities. Male to female ratio was nearly equal , so we didn’t discuss the gender among other risk factors. Type of the study:A cross- secti

... Show More
View Publication Preview PDF