Monaural source separation is a challenging issue due to the fact that there is only a single channel available; however, there is an unlimited range of possible solutions. In this paper, a monaural source separation model based hybrid deep learning model, which consists of convolution neural network (CNN), dense neural network (DNN) and recurrent neural network (RNN), will be presented. A trial and error method will be used to optimize the number of layers in the proposed model. Moreover, the effects of the learning rate, optimization algorithms, and the number of epochs on the separation performance will be explored. Our model was evaluated using the MIR-1K dataset for singing voice separation. Moreover, the proposed approach achieves (4.81) dB GNSDR gain, (7.28) dB GSIR gain, and (3.39) dB GSAR gain in comparison to current approaches
The research is exposed to the concept of rough discourse in contemporary theater with a critical reading that takes the genealogical work as a starting point in deconstructing the references of rough discourse and pursuing its paths in the civilization and cultural framework and how it identifies aesthetically within the theatrical field and the extents of its procedural treatments in order to reveal it and clarify its limits and representations, as the research included the first chapter. (methodological framework), the second chapter (theoretical framework), which included two sections, the first took place under the title (rough dramatization), while the second topic took place under the title (rough drama), and the second chapter re
... Show MoreThe need to create the optimal water quality management process has motivated researchers to pursue prediction modeling development. One of the widely important forecasting models is the sessional autoregressive integrated moving average (SARIMA) model. In the present study, a SARIMA model was developed in R software to fit a time series data of monthly fluoride content collected from six stations on Tigris River for the period from 2004 to 2014. The adequate SARIMA model that has the least Akaike's information criterion (AIC) and mean squared error (MSE) was found to be SARIMA (2,0,0) (0,1,1). The model parameters were identified and diagnosed to derive the forecasting equations at each selected location. The correlation coefficien
... Show MoreThis study aims to estimate the accuracy of digital elevation models (DEM) which are created with exploitation of open source Google Earth data and comparing with the widely available DEM datasets, Shuttle Radar Topography Mission (SRTM), version 3, and Advanced Spaceborne Thermal Emission and Reflection Radiometer Global Digital Elevation Model (ASTER GDEM), version 2. The GPS technique is used in this study to produce digital elevation raster with a high level of accuracy, as reference raster, compared to the DEM datasets. Baghdad University, Al Jadriya campus, is selected as a study area. Besides, 151 reference points were created within the study area to evaluate the results based on the values of RMS.Furthermore, th
... Show MoreThis study revolves around the rapid changes of science and a comparison of the formal and practical aspects and the reason behind summoning the changes and their types, which are subject to the influence of the recipient. This transformation represents formal and intellectual production cycles and formal functional generation that is subject to the goals of the system of multiple differences at the level of time and place. It meets the needs and the request for change, but access to it comes through multiple systems and portals that are different from the normal and the usual, so this study was called (meta and its dimensions in the designed biological formation (virtual reality environment - a model). The research seeks to find solutio
... Show MoreThis paper considers and proposes new estimators that depend on the sample and on prior information in the case that they either are equally or are not equally important in the model. The prior information is described as linear stochastic restrictions. We study the properties and the performances of these estimators compared to other common estimators using the mean squared error as a criterion for the goodness of fit. A numerical example and a simulation study are proposed to explain the performance of the estimators.
A genetic algorithm model coupled with artificial neural network model was developed to find the optimal values of upstream, downstream cutoff lengths, length of floor and length of downstream protection required for a hydraulic structure. These were obtained for a given maximum difference head, depth of impervious layer and degree of anisotropy. The objective function to be minimized was the cost function with relative cost coefficients for the different dimensions obtained. Constraints used were those that satisfy a factor of safety of 2 against uplift pressure failure and 3 against piping failure.
Different cases reaching 1200 were modeled and analyzed using geo-studio modeling, with different values of input variables. The soil wa
POSSIBILITY OF APPLICATION THE BALANCED SCORECARD IN THE IRAQI INDUSTRIAL COMPANIES: A PROPOSED MODEL
The aim of this research is to find out the influence of Daniel's model on the skills of the twenty-first century among the students of the scientific-fifth grade at the secondary and preparatory government morning schools for the academic year 2022- 2023. Two groups were chosen out of five groups for the fifth-scientific grade, one of which represents the experimental group that is taught by the Daniel model, and the other is the control group that is taught in the traditional method. The equivalence of the two research groups was verified with a set of variables. As for the research tool, a scale was developed by the researchers for the skills of the twenty-first century, in which they adopted the framework of the Partnership Organizat
... Show More