Preferred Language
Articles
/
YhbaFooBVTCNdQwCuZAN
Hybrid Deep Learning Model for Singing Voice Separation
...Show More Authors

Monaural source separation is a challenging issue due to the fact that there is only a single channel available; however, there is an unlimited range of possible solutions. In this paper, a monaural source separation model based hybrid deep learning model, which consists of convolution neural network (CNN), dense neural network (DNN) and recurrent neural network (RNN), will be presented. A trial and error method will be used to optimize the number of layers in the proposed model. Moreover, the effects of the learning rate, optimization algorithms, and the number of epochs on the separation performance will be explored. Our model was evaluated using the MIR-1K dataset for singing voice separation. Moreover, the proposed approach achieves (4.81) dB GNSDR gain, (7.28) dB GSIR gain, and (3.39) dB GSAR gain in comparison to current approaches

Scopus Crossref
View Publication
Publication Date
Sat Jan 03 2026
Journal Name
Journal Of Physical Education
The Effect of Constructive Learning Model on Cognitive Achievement and Learning dribbling Skill in Soccer for Secondary School Students
...Show More Authors

The research aimed at identifying the effect of using constructive learning model on academic achievement and learning soccer dribbling Skill in 2nd grade secondary school students. The researcher used the experimental method on (30) secondary school students; 10 selected for pilot study, 20 were divided into two groups. The experimental group followed constructive learning model while the controlling group followed the traditional method. The experimental program lasted for eight weeks with two teaching sessions per week for each group. The data was collected and treated using SPSS to conclude the positive effect of using constructive learning model on developing academic achievement and learning soccer dribbling Skill in 2nd grade seconda

... Show More
View Publication
Publication Date
Mon Jul 05 2010
Journal Name
Evolutionary Algorithms
Variants of Hybrid Genetic Algorithms for Optimizing Likelihood ARMA Model Function and Many of Problems
...Show More Authors

Optimization is essentially the art, science and mathematics of choosing the best among a given set of finite or infinite alternatives. Though currently optimization is an interdisciplinary subject cutting through the boundaries of mathematics, economics, engineering, natural sciences, and many other fields of human Endeavour it had its root in antiquity. In modern day language the problem mathematically is as follows - Among all closed curves of a given length find the one that closes maximum area. This is called the Isoperimetric problem. This problem is now mentioned in a regular fashion in any course in the Calculus of Variations. However, most problems of antiquity came from geometry and since there were no general methods to solve suc

... Show More
Preview PDF
Publication Date
Tue Apr 26 2011
Journal Name
Evolutionary Algorithms
Variants of Hybrid Genetic Algorithms for Optimizing Likelihood ARMA Model Function and Many of Problems
...Show More Authors

View Publication
Crossref (1)
Crossref
Publication Date
Sun Jan 01 2017
Journal Name
Ieee/acm Transactions On Audio, Speech, And Language Processing
Underdetermined Convolutive Source Separation Using GEM-MU With Variational Approximated Optimum Model Order NMF2D
...Show More Authors

View Publication
Scopus (25)
Crossref (17)
Scopus Clarivate Crossref
Publication Date
Sun Mar 15 2020
Journal Name
Al-academy
Expressive Discourse in the Rural Singing Form: وليد حسن الجـــــــابري
...Show More Authors

The expressive discourse, in the form of the rural singing, is considered one of the interactive framework and the metaphorical dialogues in creating the aesthetic climate that connects the circles of its basic elements, singing, playing music, expression, costumes, sham movements and so forth.  

     The rhetorical language in this field includes all those parts and turns them into an integrated idea within the culture of the musical science, specifically the heart of the rural singing. This research dealt with a number of topics of relevance in the expressive discourse for the form of the rural singing. The first chapter consists of the methodological framework of the research, represented by the r

... Show More
View Publication Preview PDF
Crossref
Publication Date
Mon Jan 01 2024
Journal Name
Iraqi Journal Of Applied Physics
Fabrication of PAN:Cellulose Membrane for Oil/Water Separation
...Show More Authors

In this study, we fabricated nanofiltration membranes using the electrospinning technique, employing pure PAN and a mixed matrix of PAN/HPMC. The PAN nanofibrous membranes with a concentration of 13wt% were prepared and blended with different concentrations of HPMC in the solvent N, N-Dimethylformamide (DMF). We conducted a comprehensive analysis of these membranes' surface morphology, chemical composition, wettability, and porosity and compared the results. The findings indicated that the inclusion of HPMC in the PAN membranes led to a reduction in surface porosity and fiber size. The contact angle decreased, indicating increased surface hydrophilicity, which can enhance flux and reduce fouling tendencies. Subsequently, we evaluated the e

... Show More
Scopus
Publication Date
Mon Apr 01 2024
Journal Name
Telkomnika (telecommunication Computing Electronics And Control)
Classification of grapevine leaves images using VGG-16 and VGG-19 deep learning nets
...Show More Authors

The successful implementation of deep learning nets opens up possibilities for various applications in viticulture, including disease detection, plant health monitoring, and grapevine variety identification. With the progressive advancements in the domain of deep learning, further advancements and refinements in the models and datasets can be expected, potentially leading to even more accurate and efficient classification systems for grapevine leaves and beyond. Overall, this research provides valuable insights into the potential of deep learning for agricultural applications and paves the way for future studies in this domain. This work employs a convolutional neural network (CNN)-based architecture to perform grapevine leaf image classifi

... Show More
View Publication
Scopus (18)
Crossref (17)
Scopus Crossref
Publication Date
Thu Dec 01 2016
Journal Name
Al.qadisiya Journal For The Sciences Of Physical Education
Comparing self-learning associated with the model and learning reverse fashioned way of partial way to learn Olympic lifts for beginners
...Show More Authors

Abstract The purpose of this study, teach the art of performing Olympic lifts (snatch and, clean and jerk) using the two methods are instructional (self-learning associated with the model) and (reverse style of partial way). Identify the effectiveness of these methods in learning the art of performance and style of the best Olympic lifting in the learning and retention of novice for Olympic lifts. The research sample consisted of 16 lifters were selected purposively representing specialist center for the care of athletic talent to weightlifting for ages 14 years. The sample was divided into two experimental, Each group (8) eight weightlifters. The experimental group used the style of the first self-learning associated with the m

... Show More
View Publication Preview PDF
Publication Date
Wed Apr 28 2021
Journal Name
Misan Journal For Physical Education Sciences
The Effectiveness of Using Generative Learning Model in Learning Kinetic Series on Rings and Horizontal Bar In Artistic Gymnastics for men
...Show More Authors

The aim of this study was to identify the effectiveness of using generative learning model in learning kinetic series on rings and horizontal bar in artistic gymnastics for men ,Also, the two groups were better in learning the two series of movements on the rings and horizontal bar . The experimental method was used to design two parallel groups with pretested and posttest .The sample included third graders at the College of Physical Education and Sports Sciences - University of Baghdad ,The third class (d) was chosen to represent the control group that applied the curriculum in the college, with (12) students per group. After conducting the tribal tests, the main experiment was carried out for (8) weeks at the rate of two units per week di

... Show More
Preview PDF
Publication Date
Sat Jan 31 2026
Journal Name
International Journal Of Intelligent Engineering And Systems
Low-complexity Deep Learning for Joint Channel-type Identification and SNR Estimation in MIMO-OFDM Using CNN–BRNN with LUT Labels
...Show More Authors

Channel estimation (CE) is essential for wireless links but becomes progressively onerous as Fifth Generation (5G) Multi-Input Multi-Output (MIMO) systems and extensive fading expand the search space and increase latency. This study redefines CE support as the process of learning to deduce channel type and signal-tonoise ratio (SNR) directly from per-tone Orthogonal Frequency-Division Multiplexing (OFDM) observations,with blind channel state information (CSI). We trained a dual deep model that combined Convolutional Neural Networks (CNNs) with Bidirectional Recurrent Neural Networks (BRNNs). We used a lookup table (LUT) label for channel type (class indices instead of per-tap values) and ordinal supervision for SNR (0–20 dB,5-dB steps). T

... Show More
View Publication Preview PDF
Crossref