Generalized multivariate transmuted Bessel distribution belongs to the family of probability distributions with a symmetric heavy tail. It is considered a mixed continuous probability distribution. It is the result of mixing the multivariate Gaussian mixture distribution with the generalized inverse normal distribution. On this basis, the paper will study a multiple compact regression model when the random error follows a generalized multivariate transmuted Bessel distribution. Assuming that the shape parameters are known, the parameters of the multiple compact regression model will be estimated using the maximum likelihood method and Bayesian approach depending on non-informative prior information. In addition, the Bayes factor was used as a criterion to test the hypotheses. A Gaussian distribution rule selects the bandwidth parameter and the kernel function based on the Gauss kernel function and quartic kernel function. It estimates the model parameters are under quadratic loss function. The researchers concluded that the posterior probability distribution of is a multivariate t distribution. Applying the findings to real data related to the jaundice percentage in the blood component as a response variable, red blood cell volume and red blood cell sedimentation as parametric influencing variables, and white and red cells as nonparametric influencing variables, the researchers concluded that when the shape parameters increase, the values of the mean square error criteria of And the variance parameter decreases.
We presented here a 25years old lady with a multiple hatdtid cysts in lung and liver and spleen in large number in each organ. Which regarded inoperable and difficult to treared.We use medical treatment with antihelimenthes drugs in new regime and follow-up over 1year clinically, laboratory investigations, U/s and CT.scan. There was good disappearance of liver and spleen cysts with very good response in lungs.
Background: Multiple sclerosis (MS) is an inflammatory disease of the central nervous system, in which the myelin sheaths got injured. The prevalence of MS is on grow, as well as, it affects the young ages. Females are most common to have MS compared to males. Oxidative stress is the situation of imbalance between oxidants (free radicals and reactive oxygen species (ROS)) and antioxidants in a living system, in which either the oxidants are elevated or antioxidants are reduced, or sometimes both. ROS and oxidative stress have been implicated in the progression of many degenerative diseases, which is important in cracking the unrevealed mysteries of MS. In this review article, some of the proposed mechanisms that link oxidative stres
... Show MoreAims to find out the (Extent of mathematics teachers' appreciation of the mathematical problem `multiple solutions) Research sample consisted of (100) mathematics teachers distributed on the General Directorates of Education in Baghdad (Rusafa 1/2/3) and (Karkh 1/2/ 3) There was two research approach which are: The first - two different answers of students to the same issue where teachers must assess each answer and explain which one the teacher will accept and why? The second - Different solutions of students' to the same issue, including wrong answers , Teachers should correct the answers and give them final grades (0-10). Descriptive and analytical Approch was used in this research methodology And zero hypotheses, which are as f
... Show MoreIn this paper, some estimators of the unknown shape parameter and reliability function of Basic Gompertz distribution (BGD) have been obtained, such as MLE, UMVUE, and MINMSE, in addition to estimating Bayesian estimators under Scale invariant squared error loss function assuming informative prior represented by Gamma distribution and non-informative prior by using Jefferys prior. Using Monte Carlo simulation method, these estimators of the shape parameter and R(t), have been compared based on mean squared errors and integrated mean squared, respectively
In this study, we made a comparison between LASSO & SCAD methods, which are two special methods for dealing with models in partial quantile regression. (Nadaraya & Watson Kernel) was used to estimate the non-parametric part ;in addition, the rule of thumb method was used to estimate the smoothing bandwidth (h). Penalty methods proved to be efficient in estimating the regression coefficients, but the SCAD method according to the mean squared error criterion (MSE) was the best after estimating the missing data using the mean imputation method
In this research, Artificial Neural Networks (ANNs) technique was applied in an attempt to predict the water levels and some of the water quality parameters at Tigris River in Wasit Government for five different sites. These predictions are useful in the planning, management, evaluation of the water resources in the area. Spatial data along a river system or area at different locations in a catchment area usually have missing measurements, hence an accurate prediction. model to fill these missing values is essential.
The selected sites for water quality data prediction were Sewera, Numania , Kut u/s, Kut d/s, Garaf observation sites. In these five sites models were built for prediction of the water level and water quality parameters.
Due to its importance in physics and applied mathematics, the non-linear Sturm-Liouville problems
witnessed massive attention since 1960. A powerful Mathematical technique called the Newton-Kantorovich
method is applied in this work to one of the non-linear Sturm-Liouville problems. To the best of the authors’
knowledge, this technique of Newton-Kantorovich has never been applied before to solve the non-linear
Sturm-Liouville problems under consideration. Accordingly, the purpose of this work is to show that this
important specific kind of non-linear Sturm-Liouville differential equations problems can be solved by
applying the well-known Newton-Kantorovich method. Also, to show the efficiency of appl
In many scientific fields, Bayesian models are commonly used in recent research. This research presents a new Bayesian model for estimating parameters and forecasting using the Gibbs sampler algorithm. Posterior distributions are generated using the inverse gamma distribution and the multivariate normal distribution as prior distributions. The new method was used to investigate and summaries Bayesian statistics' posterior distribution. The theory and derivation of the posterior distribution are explained in detail in this paper. The proposed approach is applied to three simulation datasets of 100, 300, and 500 sample sizes. Also, the procedure was extended to the real dataset called the rock intensity dataset. The actual dataset is collecte
... Show MoreCox regression model have been used to estimate proportion hazard model for patients with hepatitis disease recorded in Gastrointestinal and Hepatic diseases Hospital in Iraq for (2002 -2005). Data consists of (age, gender, survival time terminal stat). A Kaplan-Meier method has been applied to estimate survival function and hazerd function.
The paper generates a geological model of a giant Middle East oil reservoir, the model constructed based on the field data of 161 wells. The main aim of the paper was to recognize the value of the reservoir to investigate the feasibility of working on the reservoir modeling prior to the final decision of the investment for further development of this oilfield. Well log, deviation survey, 2D/3D interpreted seismic structural maps, facies, and core test were utilized to construct the developed geological model based on comprehensive interpretation and correlation processes using the PETREL platform. The geological model mainly aims to estimate stock-tank oil initially in place of the reservoir. In addition, three scenarios were applie
... Show More