In this paper, RBF-based multistage auto-encoders are used to detect IDS attacks. RBF has numerous applications in various actual life settings. The planned technique involves a two-part multistage auto-encoder and RBF. The multistage auto-encoder is applied to select top and sensitive features from input data. The selected features from the multistage auto-encoder is wired as input to the RBF and the RBF is trained to categorize the input data into two labels: attack or no attack. The experiment was realized using MATLAB2018 on a dataset comprising 175,341 case, each of which involves 42 features and is authenticated using 82,332 case. The developed approach here has been applied for the first time, to the knowledge of the authors, to detect IDS attacks with 98.80% accuracy when validated using UNSW-NB15 dataset. The experimental results show the proposed method presents satisfactory results when compared with those obtained in this field.
The electronic payment systems are considered the most important infrastructure for the work of banks, particularly after a steady and remarkable development in information and communication technology, Which created the reality of the work of the infrastructure for these systems and these systems also become one of the most important components of infrastructure for the work of banks, cause it is one of the most important channels through which the transfer of cash, financial instruments between financial institutions in general and banking in particular.
In order to achieve the objectives of the research, the most important to identify the concept of electronic payment systems, and its divisions, and th
... Show MoreThe diagnosis of acute appendicitis (AA) sometimes is illusive and the accompanying clinical and laboratory manifestations cannot be used for definitive diagnosis. Objective: This study aimed to evaluate the diagnostic value of neutrophil/lymphocyte ratio (NLR) in detection of AA. Materials and Methods: This is a cross-sectional study that included a total of 80 adult patients with AA and 62 age- and gender-matched patients with abdominal pain due to causes other than AA. Three milliliter of peripheral blood were collected from each participant. The NLR was calculated by dividing the absolute neutrophil count by the absolute lymphocyte count. Receiver operating characteristic curve was used to assess the diagnostic value of NLR in detection
... Show MoreThe major of DDoS attacks use TCP protocol and the TCP SYN flooding attack is the most common one among them. The SYN Cookie mechanism is used to defend against the TCP SYN flooding attack. It is an effective defense, but it has a disadvantage of high calculations and it doesn’t differentiate spoofed packets from legitimate packets. Therefore, filtering the spoofed packet can effectively enhance the SYN Cookie activity. Hop Count Filtering (HCF) is another mechanism used at the server side to filter spoofed packets. This mechanism has a drawback of being not a perfect and final solution in defending against the TCP SYN flooding attack. An enhanced mechanism of Integrating and combining the SYN Cookie with Hop Count Filtering (HCF) mech
... Show MoreECG is an important tool for the primary diagnosis of heart diseases, which shows the electrophysiology of the heart. In our method, a single maternal abdominal ECG signal is taken as an input signal and the maternal P-QRS-T complexes of original signal is averaged and repeated and taken as a reference signal. LMS and RLS adaptive filters algorithms are applied. The results showed that the fetal ECGs have been successfully detected. The accuracy of Daisy database was up to 84% of LMS and 88% of RLS while PhysioNet was up to 98% and 96% for LMS and RLS respectively.
Due to the large population of motorway users in the country of Iraq, various approaches have been adopted to manage queues such as implementation of traffic lights, avoidance of illegal parking, amongst others. However, defaulters are recorded daily, hence the need to develop a mean of identifying these defaulters and bring them to book. This article discusses the development of an approach of recognizing Iraqi licence plates such that defaulters of queue management systems are identified. Multiple agencies worldwide have quickly and widely adopted the recognition of a vehicle license plate technology to expand their ability in investigative and security matters. License plate helps detect the vehicle's information automatically ra
... Show MoreThe study was conducted for the detection of Aflatoxin B1(AFB1) in the serum and urine of 42 early and middle childhood patients (26 male and 16 female ) with renal function disease, liver function disease, in additional to atrophy in the growth and other symptoms depending on the information within consent obtained from each patient, in addition to 8 children, apparently healthy, as the control. The technique of HPLC was used for the detection of AFB1 from all samples. The results showed that out of 42 patient children, 19 (45.2%) gave positive detection of AFB1 in the serum among all age groups patients with a mean of 0.88 ng/ml and a range of (0.12-3.04) ng/ml. This was compared with the cont
... Show MoreEsculin (ESCN) is used in the pharmaceutical industry with intravenous effect, stimulant and anti-inflammatory capillaries, like vitamin P. It is a significant component of many anti-inflammatory remedies such as esqusan, esflazid and anavenol [14]. It is also found in numerous other remedies available in the market such as proctosone, anustat, and ariproct.
To determine experimental conditions, to elucidate retention behavior of esculin in HILIC mode. Moreover, to suggest new ways to separate and determinate esculin in ointments.
Two hydrophilic c
Data mining has the most important role in healthcare for discovering hidden relationships in big datasets, especially in breast cancer diagnostics, which is the most popular cause of death in the world. In this paper two algorithms are applied that are decision tree and K-Nearest Neighbour for diagnosing Breast Cancer Grad in order to reduce its risk on patients. In decision tree with feature selection, the Gini index gives an accuracy of %87.83, while with entropy, the feature selection gives an accuracy of %86.77. In both cases, Age appeared as the most effective parameter, particularly when Age<49.5. Whereas Ki67 appeared as a second effective parameter. Furthermore, K- Nearest Neighbor is based on the minimu
... Show More