Recently, microalgae have become a promising source in the production of biofuel. However, the cost of production is still the main obstacle to develop of this type of source. Although there are many extensive studies on the requirements provided for the cultivation of the microalgae, the study of the process, via the variables that affect the cultivation of microalgae, being still one of the important tasks to improve the production of biofuel. The present article is a serious attempt to investigate of use commercial fertilizer NPK (20:20:20+TE N: P: K) as considered a cheap nutrient medium in growth Chlorella vulgaris by comparison with traditional nutrient (Chu.10 medium). In addition, the current study addresses effect of di
... Show MoreDuring COVID-19, wearing a mask was globally mandated in various workplaces, departments, and offices. New deep learning convolutional neural network (CNN) based classifications were proposed to increase the validation accuracy of face mask detection. This work introduces a face mask model that is able to recognize whether a person is wearing mask or not. The proposed model has two stages to detect and recognize the face mask; at the first stage, the Haar cascade detector is used to detect the face, while at the second stage, the proposed CNN model is used as a classification model that is built from scratch. The experiment was applied on masked faces (MAFA) dataset with images of 160x160 pixels size and RGB color. The model achieve
... Show MoreDetecting and subtracting the Motion objects from backgrounds is one of the most important areas. The development of cameras and their widespread use in most areas of security, surveillance, and others made face this problem. The difficulty of this area is unstable in the classification of the pixels (foreground or background). This paper proposed a suggested background subtraction algorithm based on the histogram. The classification threshold is adaptively calculated according to many tests. The performance of the proposed algorithms was compared with state-of-the-art methods in complex dynamic scenes.
During COVID-19, wearing a mask was globally mandated in various workplaces, departments, and offices. New deep learning convolutional neural network (CNN) based classifications were proposed to increase the validation accuracy of face mask detection. This work introduces a face mask model that is able to recognize whether a person is wearing mask or not. The proposed model has two stages to detect and recognize the face mask; at the first stage, the Haar cascade detector is used to detect the face, while at the second stage, the proposed CNN model is used as a classification model that is built from scratch. The experiment was applied on masked faces (MAFA) dataset with images of 160x160 pixels size and RGB color. The model achieve
... Show More<p><span>A Botnet is one of many attacks that can execute malicious tasks and develop continuously. Therefore, current research introduces a comparison framework, called BotDetectorFW, with classification and complexity improvements for the detection of Botnet attack using CICIDS2017 dataset. It is a free online dataset consist of several attacks with high-dimensions features. The process of feature selection is a significant step to obtain the least features by eliminating irrelated features and consequently reduces the detection time. This process implemented inside BotDetectorFW using two steps; data clustering and five distance measure formulas (cosine, dice, driver & kroeber, overlap, and pearson correlation
... Show MoreBackground: Any child with Down's syndrome does not develop in the same manner as normal child. Therefore, the child should not be viewed as being like everyone else. Developmental enamel defects in primary teeth have been found at least twice as frequently in disabled children as in control children. Down's syndrome consumed protein more than the recommended daily allowance compared to other disabled groups. Therefore, the aim of this study was to investigate developmental defects of enamel and their relations to nutrient intake among Down's syndrome children in comparison to normal children. Materials and Methods: A sample consisted of fifty institutionalized Down's syndrome children (study group) and 50 normal children (control group)
... Show MoreNowadays, the mobile communication networks have become a consistent part of our everyday life by transforming huge amount of data through communicating devices, that leads to new challenges. According to the Cisco Networking Index, more than 29.3 billion networked devices will be connected to the network during the year 2023. It is obvious that the existing infrastructures in current networks will not be able to support all the generated data due to the bandwidth limits, processing and transmission overhead. To cope with these issues, future mobile communication networks must achieve high requirements to reduce the amount of transferred data, decrease latency and computation costs. One of the essential challenging tasks in this subject
... Show MoreIn this paper, thermal performance of a zig-zig solar air heater (ZZSAH) with and without using steel wire mesh on the absorber plate of the collector is experimentally investigated. The experimental work includes four inclination angles of the collector 20o, 30o, 45o, and 60o and four air mass flow rates of 0.03, 0.04, 0.06, and 0.08 kg/s under varieties of operating conditions of a geographic location of Baghdad. New correlation equations of Nusselt number are obtained from experimental results for both types of collectors where the effect of varying of the inclination angle of collector taken into consideration in the experiment. The correlations show good agreement wi
... Show MoreThe hydrological process has a dynamic nature characterised by randomness and complex phenomena. The application of machine learning (ML) models in forecasting river flow has grown rapidly. This is owing to their capacity to simulate the complex phenomena associated with hydrological and environmental processes. Four different ML models were developed for river flow forecasting located in semiarid region, Iraq. The effectiveness of data division influence on the ML models process was investigated. Three data division modeling scenarios were inspected including 70%–30%, 80%–20, and 90%–10%. Several statistical indicators are computed to verify the performance of the models. The results revealed the potential of the hybridized s
... Show More