Preferred Language
Articles
/
YRf-Q48BVTCNdQwCwWh8
Fast Hybrid String Matching Algorithm based on the Quick-Skip and Tuned Boyer-Moore Algorithms
...Show More Authors

Crossref
View Publication
Publication Date
Sat Jan 01 2011
Journal Name
Iraqi Journal Of Science
A CRYPTOGRAPHIC TECHNIQUE BASED ON AVL TREE
...Show More Authors

Publication Date
Sat Aug 03 2024
Journal Name
Proceedings Of Ninth International Congress On Information And Communication Technology
Offline Signature Verification Based on Neural Network
...Show More Authors

The investigation of signature validation is crucial to the field of personal authenticity. The biometrics-based system has been developed to support some information security features.Aperson’s signature, an essential biometric trait of a human being, can be used to verify their identification. In this study, a mechanism for automatically verifying signatures has been suggested. The offline properties of handwritten signatures are highlighted in this study which aims to verify the authenticity of handwritten signatures whether they are real or forged using computer-based machine learning techniques. The main goal of developing such systems is to verify people through the validity of their signatures. In this research, images of a group o

... Show More
Publication Date
Thu Feb 28 2019
Journal Name
Multimedia Tools And Applications
Shot boundary detection based on orthogonal polynomial
...Show More Authors

View Publication
Scopus (40)
Crossref (34)
Scopus Clarivate Crossref
Publication Date
Sat Jun 01 2024
Journal Name
Journal Of Engineering
Intelligent Dust Monitoring System Based on IoT
...Show More Authors

Dust is a frequent contributor to health risks and changes in the climate, one of the most dangerous issues facing people today. Desertification, drought, agricultural practices, and sand and dust storms from neighboring regions bring on this issue. Deep learning (DL) long short-term memory (LSTM) based regression was a proposed solution to increase the forecasting accuracy of dust and monitoring. The proposed system has two parts to detect and monitor the dust; at the first step, the LSTM and dense layers are used to build a system using to detect the dust, while at the second step, the proposed Wireless Sensor Networks (WSN) and Internet of Things (IoT) model is used as a forecasting and monitoring model. The experiment DL system

... Show More
View Publication
Crossref
Publication Date
Wed Jan 15 2025
Journal Name
International Journal Of Cloud Computing And Database Management
Deep video understanding based on language generation
...Show More Authors

Vol. 6, Issue 1 (2025)

View Publication Preview PDF
Publication Date
Fri Jan 31 2025
Journal Name
Joiv : International Journal On Informatics Visualization
RC5 Performance Enhancement Based on Parallel Computing
...Show More Authors

This study aims to enhance the RC5 algorithm to improve encryption and decryption speeds in devices with limited power and memory resources. These resource-constrained applications, which range in size from wearables and smart cards to microscopic sensors, frequently function in settings where traditional cryptographic techniques because of their high computational overhead and memory requirements are impracticable. The Enhanced RC5 (ERC5) algorithm integrates the PKCS#7 padding method to effectively adapt to various data sizes. Empirical investigation reveals significant improvements in encryption speed with ERC5, ranging from 50.90% to 64.18% for audio files and 46.97% to 56.84% for image files, depending on file size. A substanti

... Show More
View Publication
Crossref
Publication Date
Thu May 30 2024
Journal Name
Iraqi Journal Of Science
An Evolutionary Algorithm for Improving the Quantity and Quality of the Detected Complexes from Protein Interaction Networks
...Show More Authors

One of the recent significant but challenging research studies in computational biology and bioinformatics is to unveil protein complexes from protein-protein interaction networks (PPINs). However, the development of a reliable algorithm to detect more complexes with high quality is still ongoing in many studies. The main contribution of this paper is to improve the effectiveness of the well-known modularity density ( ) model when used as a single objective optimization function in the framework of the canonical evolutionary algorithm (EA). To this end, the design of the EA is modified with a gene ontology-based mutation operator, where the aim is to make a positive collaboration between the modularity density model and the proposed

... Show More
View Publication
Scopus Crossref
Publication Date
Tue Jun 01 2021
Journal Name
Al-khwarizmi Engineering Journal
Effect of Environmental Factors on the Accuracy of a Quality Inspection System Based on Transfer Learning
...Show More Authors

In this research, a study is introduced on the effect of several environmental factors on the performance of an already constructed quality inspection system, which was designed using a transfer learning approach based on convolutional neural networks. The system comprised two sets of layers, transferred layers set from an already trained model (DenseNet121) and a custom classification layers set. It was designed to discriminate between damaged and undamaged helical gears according to the configuration of the gear regardless to its dimensions, and the model showed good performance discriminating between the two products at ideal conditions of high-resolution images.

So, this study aimed at testing the system performance at poor s

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Tue Jun 01 2021
Journal Name
Al-khwarizmi Engineering Journal
Effect of Environmental Factors on the Accuracy of a Quality Inspection System Based on Transfer Learning
...Show More Authors

In this research, a study is introduced on the effect of several environmental factors on the performance of an already constructed quality inspection system, which was designed using a transfer learning approach based on convolutional neural networks. The system comprised two sets of layers, transferred layers set from an already trained model (DenseNet121) and a custom classification layers set. It was designed to discriminate between damaged and undamaged helical gears according to the configuration of the gear regardless to its dimensions, and the model showed good performance discriminating between the two products at ideal conditions of high-resolution images. So, this study aimed at testing the system performance at poo

... Show More
Preview PDF
Crossref (1)
Crossref
Publication Date
Tue Mar 26 2024
Journal Name
World Electric Vehicle Journal
Fast Finite-Time Composite Controller for Vehicle Steer-by-Wire Systems with Communication Delays
...Show More Authors

The modern steer-by-wire (SBW) systems represent a revolutionary departure from traditional automotive designs, replacing mechanical linkages with electronic control mechanisms. However, the integration of such cutting-edge technologies is not without its challenges, and one critical aspect that demands thorough consideration is the presence of nonlinear dynamics and communication network time delays. Therefore, to handle the tracking error caused by the challenge of time delays and to overcome the parameter uncertainties and external perturbations, a robust fast finite-time composite controller (FFTCC) is proposed for improving the performance and safety of the SBW systems in the present article. By lumping the uncertainties, parameter var

... Show More
View Publication
Scopus (3)
Crossref (2)
Scopus Clarivate Crossref