Leishmania species are the causative agent of a tropical disease known as leishmaniasis. Previous studies on the old world species Leishmania major, showed that the amastigotes form which resides inside the macrophage of the vertebrate host, utilize host’s sphingolipids for survival and proliferation. In this study, gene expression of serine palmitoyltransferase (SPT) subunit two (MmLCB2) of the mouse macrophage cell line (RAW264.7), which is the first enzyme in the de novo sphingolipid biosynthesis, was detected in both infected and non-infected macrophages. This was detected under condition where available sphingolipid was reduced, with the new world species Leishmania mexicana. Results of qPCR analysis showed that there was no difference in the expression of MmLCB2 in infected and non-infected macrophages, under normal and serum-reduced media, suggesting that host sphingolipid did not up-regulated during infection. This can be concluded as a difference between the Old and New world Leishmania on the level of host-parasite interaction.
Botnet detection develops a challenging problem in numerous fields such as order, cybersecurity, law, finance, healthcare, and so on. The botnet signifies the group of co-operated Internet connected devices controlled by cyber criminals for starting co-ordinated attacks and applying various malicious events. While the botnet is seamlessly dynamic with developing counter-measures projected by both network and host-based detection techniques, the convention techniques are failed to attain sufficient safety to botnet threats. Thus, machine learning approaches are established for detecting and classifying botnets for cybersecurity. This article presents a novel dragonfly algorithm with multi-class support vector machines enabled botnet
... Show MoreCredit card fraud has become an increasing problem due to the growing reliance on electronic payment systems and technological advances that have improved fraud techniques. Numerous financial institutions are looking for the best ways to leverage technological advancements to provide better services to their end users, and researchers used various protection methods to provide security and privacy for credit cards. Therefore, it is necessary to identify the challenges and the proposed solutions to address them. This review provides an overview of the most recent research on the detection of fraudulent credit card transactions to protect those transactions from tampering or improper use, which includes imbalance classes, c
... Show MoreThe detection for Single Escherichia Coli Bacteria has attracted great interest and in biology and physics applications. A nanostructured porous silicon (PS) is designed for rapid capture and detection of Escherichia coli bacteria inside the micropore. PS has attracted more attention due to its unique properties. Several works are concerning the properties of nanostructured porous silicon. In this study PS is fabricated by an electrochemical anodization process. The surface morphology of PS films has been studied by scanning electron microscope (SEM) and atomic force microscope (AFM). The structure of porous silicon was studied by energy-dispersive X-ray spectroscopy (EDX). Details of experimental methods and results are given and discussed
... Show MoreIn this paper, the botnet detection problem is defined as a feature selection problem and the genetic algorithm (GA) is used to search for the best significant combination of features from the entire search space of set of features. Furthermore, the Decision Tree (DT) classifier is used as an objective function to direct the ability of the proposed GA to locate the combination of features that can correctly classify the activities into normal traffics and botnet attacks. Two datasets namely the UNSW-NB15 and the Canadian Institute for Cybersecurity Intrusion Detection System 2017 (CICIDS2017), are used as evaluation datasets. The results reveal that the proposed DT-aware GA can effectively find the relevant features from
... Show MoreImage pattern classification is considered a significant step for image and video processing. Although various image pattern algorithms have been proposed so far that achieved adequate classification, achieving higher accuracy while reducing the computation time remains challenging to date. A robust image pattern classification method is essential to obtain the desired accuracy. This method can be accurately classify image blocks into plain, edge, and texture (PET) using an efficient feature extraction mechanism. Moreover, to date, most of the existing studies are focused on evaluating their methods based on specific orthogonal moments, which limits the understanding of their potential application to various Discrete Orthogonal Moments (DOM
... Show MoreIn this work, a functional nanocomposite consisting of multi walled carbon nanotubes combined with nanoparticles of silver and Pomegranate peel extract (MWCNTs- SNPs -NPGPE) was successfully synthesized using ultra sonic technique. The nanocomposite has been characterized using Transmission electron microscope (TEM), XRD, Energy dispersive X-ray spectroscopy (EDS) UV-Vis and FTIR. The obtained results reveal that the MWCNTs-SNPs-NPGPE nanocomposite exhibits form of nanotubes with rough surfaces and containing black spots, which are the silver nanoparticles. The dimensions of this tube are 161 nm in length and 60 nm in width with nanoparticles of silver not exceeding 20 nm. The XRD pattern of the prepared MWCNTs-SNPs-NPGPE nanocomposite s
... Show More