In any natural area or water body, evapotranspiration is one of the main outcomes in the water balance equation. It is also a crucial component of the hydrologic cycle and considers as the main requirement in the planning and designing of any irrigation project. The climatic parameters for the Ishaqi area are calculated from the available date of Samarra and Al-Khlais meteorological stations according to a method for the period (1982–2017) according to Fetter method. The results of the mean of rainfall, relative humidity temperature, evaporation, sunshine, and wind speed of the Ishaqi area are 171.96 mm, 49.67%, 24.86 C°, 1733.61 mm, 8.34 h/day, and 2.3 m/sec, respectively. Values of Potential Evapotranspiration are determined by utilizing equation Thornthwiat, Lerner's methods. is applied for computation water balance. The water surplus amount of the study area is 89.9 mm, while the water deficit amount of the study area is 884.228 mm. The type of climate was determined by applying three climate classifications. The area was considered as arid climate according to the Mather and Brown & Cocheme classification.
Mandali Basin is located between latitudes (33◦ 39' 00" and 33◦
54' 55") to the north and longitudes (45ο 11' 00" and 45ο 40' 00") to the
east; to the east of Diyala province at the Iraqi-Iranian border; the
basin area is approximately 491 km2.
From the study of climate reality of the basin between 1990-
2013and assessment of the basic climate transactions, it was found
that the annual rate of rainfall is 253.02 mm, the relative humidity
(44.4%), the temperature (21.3 ◦C), wind speed (2.08 m /sec.),
sunshine (8.27 h/day) and evaporation of the basin class (a) (271.98
mm) and corrected potential evapotranspiration (80.03 mm). The
results of the data analysis show that, there are
The quality of groundwater in the Al-Hawija area was assessed using a water quality index. Data of nine physico-chemical parameters of 28 groundwater wells were used to calculate the water quality index (WQI). A heterogeneous water quality was reported, where in close proximity to the Lesser Zab River (LZR), it has low WQI values and permissible for human consumptions due to the dilution processes by fresh water; whereas, it becomes deteriorated in areas located far away the river. The values of WQI ranges from 22 to 336, indicating a good to very poor groundwater quality.
The relationship between Al-Wand lake and groundwater was studied in Khanaqin cityby identifying water levels for Al-Wand lake and the shallow groundwater aquifer for 2019 and 2020. The hydrochemical analyses of Al-Wand river water, Al-Wand lake water and shallow groundwater, and identifying the grain size analysis and mineralogy of the surface sediments have been done. This relationship was adopted on climate data of the study area by knowing which seasons contained water surplus or water deficit, and porosity and permeability define of soil that affects groundwater movement, and identify the salinity that effect on water quality.
This hydrochemical study of the surface and groundwater in Khan AL-Baghdadi area, western Iraq, included the interpretation of physical, chemical, and biological properties. Water samples were collected from wells (14 samples) and surface water of Euphrates River (6 samples) for the dry and wet periods of October 2018 and April 2019, respectively. The stable isotopes analysis was performed for the dry period only. The surface water samples were characterized by slightly alkaline, fresh, excessively mineralized, Ca-chloride type, and hard to very hard water class. While the groundwater samples were characterized by slightly alkaline, brackish, excessively mineralized, Ca-chloride and Na-Chloride type, and hard to very hard wat
... Show MoreWater balance as a technique is considered one of the means that is relied upon in solving significant hydrological problems. The soil and water assessment tool (SWAT) model was used in this study to assess the water balance in the Wadi Al-Mohammadi basin located at the eastern edge of the Western Desert. Digital elevation model, soil data, Land use - Land cover, and climate data represent the most important requirements for the SWAT model's input as a database. The Wadi Al-Mohammadi basin delineation results show the overall drainage area was 2286.8 km2 with seven sub-basins. The trend line of climate data indicates a clear increase in the total rainfall, relative humidity, temperature, and solar radiation from 1990-
... Show MoreThe current study aimed to assessing the water quality and discussing the hydrochemical characteristics and seasonal variation of surface water on the aspect of metals in Shatt-Al-Hilla, Babil Governorate, Central Iraq. Water samples were collected from eleven sampling sites of Shatt Al-Hila for wet season in March (18/3/2018), and a dry season in July (30/7/2018).
Surface water samples were analyzed for physiochemical parameters such as water temperature pH, EC, TDS, major ions (Ca2+, Mg2+, Na+, K+, SO42-, Cl-, and HCO3-), nutrients (NO3-, and PO43-) for both seasons and DO for one season
... Show MoreThis study includes determining the climatic conditions and the nature of the reservoirs in the region with the determination of the flow direction of the aquifer. The meteorological data for the Karbala station for the period 1976-2016 showed that the values of the monthly rates of temperature, precipitation, evaporation, relative humidity, wind speed and Sunshine duration are (24.19 C◦), (95.5 mm), (2828.6mm), (46.75%), (2.76 m/sec), and (8.61 h/day) respectively. Thorenthwait method was used to calculate the values of Potential Evapotranspiration (PE) then determine the annual value of WS and WD which equal 28.11mm and 941.94mm respectively. Mean monthly water surplus for the period (1976-2016) was recorded about (9.36mm) in Decembe
... Show MoreThe water scarcity that Iraq suffers from and the low irrigation efficiency in irrigation projects, therefore, it was necessary to evaluate the performance of the irrigation system of the western canal for the Ishaqi irrigation project in Salah al-Din Governorate to determine the water management strategies that can be used to improve the irrigation efficiency in the project. The performance of the field irrigation system was evaluated on two fields of different crops and irrigation methods according to the agricultural reality of the study area in the Western canal for the Al-Ishaqi Irrigation Project in Salah Al-Din Governorate. The fieldwork included measurements of the moisture content before and after irrigation, fi
... Show MoreThe groundwater represents the main source of water in the study area due to lack of surface water. The Dammam unconfined aquifer represents the main aquifer in the study area and Southern desert because of the regional extent, the quantity and quality of water. Many groundwater wells have been drilled in the study area to coverage the huge demand of water for agricultural purposes. The Geographic Information System (GIS) was used to estimate the volume of water which calculated (25.6964 × 109 m3) within the study area , automate calculation of the area of Al Salman basin using digital elevation models, derive the thickness maps of Al
Dammam unconfined aquifer from Key holes (KH) and Bore holes (
An electrical survey was carried out by using 2D imaging technique at (15)
station. The study area is located southern Al-Shihaby area, south-east of Wasit
governorate, Eastern Iraq. The numbers of the employed electrodes were (120) and
the (a) spacing equal to (10m), and the total length of survey line is (1200m). The
inverse models of 2D imaging showed one Quaternary aquifer located in the
Quaternary deposits which comprises in alluvial fan and wind deposits of
(Pleistocene – Holocene) ages. Layers of aquifer consist of gravel and sand with
little silt. Low resistivity values reflected the presence of clay layers, and increasing
salinity of water gradually with the depth. The aquifer occurs at minimum depth