One of the unique properties of laser heating applications is its powerful ability for precise pouring of energy on the needed regions in heat treatment applications. The rapid rise in temperature at the irradiated region produces a high temperature gradient, which contributes in phase metallurgical changes, inside the volume of the irradiated material. This article presents a comprehensive numerical work for a model based on experimentally laser heated AISI 1110 steel samples. The numerical investigation is based on the finite element method (FEM) taking in consideration the temperature dependent material properties to predict the temperature distribution within the irradiated material volume. The finite element analysis (FEA) was carried out using the APDL scripting language (ANSYS Parametric Design Language) that is provided by the commercial code ANSYS. Infrared (IR) thermography technique was used to explore the workpiece surface and to validate the obtained results. The work takes into account the effect of different speeds of the laser beam and pulses overlap on the temperature pattern of the material surface and depth.
(Cu1-x,Agx)2ZnSnSe4 alloys have been fabricated with different Ag content(x=0, 0.1, and 0.2) successfully from their elements. Thin films of these alloys have been deposited on coring glass substrate at room temperature by thermal evaporation technique under vacuum of 10-5Torr with thickness of 800nm and deposition rate of 0.53 nm/sec. Later, films have been annealed in vacuum at (373, and 473)K, for one hour. The crystal structure of fabricated alloys and as deposited thin films had been examined by XRD analysis, which confirms the formation of tetragonal phase in [112] direction, and no secondary phases are founded. The shifting of main polycrystalline peak (112) to lower Bragg’s angle as compared to Cu2ZnSnSe4 angle refers to incorpora
... Show MoreThe technical of Flame Thermal Spray had been used in producing a cermet
composite based on powders of stabilized zirconium oxide containing amount of
Yatteria oxide (ZrO2- 8Y2O3) reiforced by minerals powders of bonding material
(Ni-Cr- Al- Y) in different rates of additions (25, 35, 50) on stainless steel base type
(304) after preparing it by the way of Grit Blasting.
Before heat treatment, the coated cermet layers were characterized for porosity
and electric resistivity. All samples were heat treated in vacuum furnace at different
temperature and times. The physical tests had been operated after heat treatment
and gave best results especially porosity, which found to be reduced dramatically
and producing hig
Background: Urinary incontinence (UI) is a common disorder that affects women of various ages and impacts all aspects of life. This condition negatively influences quality of life. Fractional CO2 laser (10600nm) is the recent method for treatment of stress urinary incontinence in women. Objectives: The purpose of the study was to evaluate the efficacy and safety of fractional CO2 laser (10600nm) in the treatment of female stress urinary incontinence. Materials & Methods: This study was done from July 2020 to February 2021conducted at the laser institute for postgraduate studies university of Baghdad, patients collected from a private clinic and the Department of
... Show MoreTo evaluate the effects of the thermal analysis and temperature of the atmospheric heat on the optical system. it varying the thermal expansion (positive or Negative Values) of the material and then changes the characteri of the optical system properties such as radius of curvetur of the surfaces, size of the aperture stop ect.
This paper had calculated the accepted ratio of the temperature variable on the optical system during analyzing the effect of thermal analysis on the Radial Energy Distribution for +20C0 and +50C0 •
When a vehicle is left parked in the sun for an extended period, the gathered heat causes damage to several interiors within the cabin and causes discomfort for people and animals left inside the car. In the present work, the effect of the orientation of a parked white minibus on temperature distribution and cooling load calculation is studied experimentally in an open environment. Two different cases were studied facing south and facing east. For several hours, the temperature inside the car cabin had been monitored and measured at five separate locations. The cooling load calculations are carried out based on the experimental measurements. The results show that the overheating of parked cars always happens as a result
... Show MoreThe research aims to identify the theoretical foundations for measuring and analyzing quality costs and continuous improvement, as well as measuring and analyzing quality costs for the Directorate of Electricity Supply / Middle Euphrates and continuous improvement of the distribution of electrical energy,The problem was represented by the high costs of failure and waste in electrical energy result to the excesses on the network and the missing (lost) energy,Thus, measuring and analyzing quality costs for the distribution of electrical energy and identifying continuous improvement leads to a reduction in missing and an increase in sales, as the research reached many conclusions, the most important of which is the high percentage o
... Show MoreAbstract
In this paper presents two dimensional turbulent flow of different nanofluids and ribs configuration in a circular tube have been numerically investigation using FLUENT 6.3.26. Two samples of CuO and, ZnO nanoparticles with 2% v/v concentration and 40 nm as nanoparticle diameter combined with trapezoidalribs with aspect ratio of p/d=5.72 in a constant tube surface heat flux were conducted for simulation. The results showed that heat flow as Nusselt number for all cases raises with Reynolds number and volume fraction of nanofluid, likewise the results also reveal that ZnO with volume fractions of 2% in trapezoidal ribs offered highest Nusselt number at Reynolds number of Re= 30000.
Key
... Show MoreIn this paper, a numerical analysis was carried out using finite element method to analyse the mechanisms for streamer discharges. The hydrodynamic model was used with three charge carriers equations (positive ion, negative ion and electron) coupled with Poisson equation to simulate the dynamic of streamer discharge formation and propagation. The model was tested within a 2D axisymmetric tip-plate electrodes configuration using the transformer oil as the dielectric liquid. The distance between the electrodes was fixed at 1 mm and the applied voltage was 130 kV at 46 ns rising time. Simulation results showed that the time has a clear effect on the streamer propagation along the symmetry axis. In addition, it was observed that t
... Show More