Preferred Language
Articles
/
YRbilocBVTCNdQwCpVf5
Real-Time Intersection-Based Segment Aware Routing Algorithm for Urban Vehicular Networks
...Show More Authors

High vehicular mobility causes frequent changes in the density of vehicles, discontinuity in inter-vehicle communication, and constraints for routing protocols in vehicular ad hoc networks (VANETs). The routing must avoid forwarding packets through segments with low network density and high scale of network disconnections that may result in packet loss, delays, and increased communication overhead in route recovery. Therefore, both traffic and segment status must be considered. This paper presents real-time intersection-based segment aware routing (RTISAR), an intersection-based segment aware algorithm for geographic routing in VANETs. This routing algorithm provides an optimal route for forwarding the data packets toward their destination by considering the traffic segment status when choosing the next intersection. RTISAR presents a new formula for assessing segment status based on connectivity, density, load segment, and cumulative distance toward the destination. A verity period mechanism is proposed to denote the projected period when a network failure is likely to occur in a particular segment. This mechanism can be calculated for each collector packet to minimize the frequency of RTISAR execution and to control the generation of collector packets. As a result, this mechanism minimizes the communication overhead generated during the segment status computation process. Simulations are performed to evaluate RTISAR, and the results are compared with those of intersection-based connectivity aware routing and traffic flow oriented routing. The evaluation results provided evidence that RTISAR outperforms in terms of packet delivery ratio, packet delivery delay, and communication overhead.

Scopus Clarivate Crossref
View Publication
Publication Date
Wed Jun 01 2022
Journal Name
Journal Of King Saud University - Computer And Information Sciences
Heuristic initialization of PSO task scheduling algorithm in cloud computing
...Show More Authors

View Publication
Scopus (110)
Crossref (60)
Scopus Clarivate Crossref
Publication Date
Sun Apr 29 2018
Journal Name
Iraqi Journal Of Science
Solving Flexible Job Shop Scheduling Problem Using Meerkat Clan Algorithm
...Show More Authors

Meerkat Clan Algorithm (MCA) that is a swarm intelligence algorithm resulting from watchful observation of the Meerkat (Suricata suricatta) in the Kalahari Desert in southern Africa. Meerkat has some behaviour. Sentry, foraging, and baby-sitter are the behaviour used to build this algorithm through dividing the solution sets into two sets, all the operations are performed on the foraging set. The sentry presents the best solution. The Flexible Job Shop Scheduling Problem (FJSSP) is vital in the two fields of generation administration and combinatorial advancement. In any case, it is very hard to accomplish an ideal answer for this problem with customary streamlining approaches attributable to the high computational unpredictability. Most

... Show More
View Publication Preview PDF
Publication Date
Mon Mar 08 2021
Journal Name
Baghdad Science Journal
Development of six-degree of freedom strapdown terrestrial INS algorithm
...Show More Authors

Many of accurate inertial guided missilc systems need to use more complex mathematical calculations and require a high speed processing to ensure the real-time opreation. This will give rise to the need of developing an effcint

View Publication Preview PDF
Publication Date
Sun Sep 03 2017
Journal Name
Baghdad Science Journal
Scale-Invariant Feature Transform Algorithm with Fast Approximate Nearest Neighbor
...Show More Authors

There is a great deal of systems dealing with image processing that are being used and developed on a daily basis. Those systems need the deployment of some basic operations such as detecting the Regions of Interest and matching those regions, in addition to the description of their properties. Those operations play a significant role in decision making which is necessary for the next operations depending on the assigned task. In order to accomplish those tasks, various algorithms have been introduced throughout years. One of the most popular algorithms is the Scale Invariant Feature Transform (SIFT). The efficiency of this algorithm is its performance in the process of detection and property description, and that is due to the fact that

... Show More
View Publication Preview PDF
Scopus (3)
Crossref (2)
Scopus Crossref
Publication Date
Thu Jun 23 2022
Journal Name
American Scientific Research Journal For Engineering, Technology, And Sciences
A Review of TCP Congestion Control Using Artificial Intelligence in 4G and 5G Networks
...Show More Authors

In recent years, the field of research around the congestion problem of 4G and 5G networks has grown, especially those based on artificial intelligence (AI). Although 4G with LTE is seen as a mature technology, there is a continuous improvement in the infrastructure that led to the emergence of 5G networks. As a result of the large services provided in industries, Internet of Things (IoT) applications and smart cities, which have a large amount of exchanged data, a large number of connected devices per area, and high data rates, have brought their own problems and challenges, especially the problem of congestion. In this context, artificial intelligence (AI) models can be considered as one of the main techniques that can be used to solve ne

... Show More
View Publication
Publication Date
Wed Jun 30 2021
Journal Name
International Journal Of Intelligent Engineering And Systems
Promising Gains of 5G Networks with Enhancing Energy Efficiency Using Improved Linear Precoding Schemes
...Show More Authors

Scopus (2)
Scopus Crossref
Publication Date
Mon Feb 01 2021
Journal Name
Indonesian Journal Of Electrical Engineering And Computer Science
Comparative study of logistic regression and artificial neural networks on predicting breast cancer cytology
...Show More Authors

<p>Currently, breast cancer is one of the most common cancers and a main reason of women death worldwide particularly in<strong> </strong>developing countries such as Iraq. our work aims to predict the type of tumor whether benign or malignant through models that were built using logistic regression and neural networks and we hope it will help doctors in detecting the type of breast tumor. Four models were set using binary logistic regression and two different types of artificial neural networks namely multilayer perceptron MLP and radial basis function RBF. Evaluation of validated and trained models was done using several performance metrics like accuracy, sensitivity, specificity, and AUC (area under receiver ope

... Show More
View Publication
Scopus (3)
Crossref (1)
Scopus Crossref
Publication Date
Sat Sep 30 2023
Journal Name
Iraqi Journal Of Science
Performance Improvement of Generative Adversarial Networks to Generate Digital Color Images of Skin Diseases
...Show More Authors

     The main task of creating new digital images of different skin diseases is to increase the resolution of the specific textures and colors of each skin disease. In this paper, the performance of generative adversarial networks has been optimized to generate multicolor and histological color digital images of a variety of skin diseases (melanoma, birthmarks, and basal cell carcinomas). Two architectures for generative adversarial networks were built using two models: the first is a model for generating new images of dermatology through training processes, and the second is a discrimination model whose main task is to identify the generated digital images as either real or fake. The gray wolf swarm algorithm and the whale swarm alg

... Show More
View Publication Preview PDF
Scopus (1)
Scopus Crossref
Publication Date
Sat Dec 01 2007
Journal Name
Journal Of Economics And Administrative Sciences
The analysis of time series considers one of the mathematical and statistical methods in explanation of the nature phenomena and its manner in a specific time period.
...Show More Authors

The analysis of time series considers one of the mathematical and statistical methods in explanation of the nature phenomena and its manner in a specific time period.

Because the studying of time series can get by building, analysis the models and then forecasting gives the priority for the practicing in different fields, therefore the identification and selection of the model is of great importance in spite of its difficulties.

The selection of a standard methods has the ability for estimation the errors in the estimated the parameters for the model, and there will be a balance between the suitability and the simplicity of the model.

In the analysis of d

... Show More
View Publication Preview PDF
Crossref
Publication Date
Fri Jul 01 2011
Journal Name
Bulletin Of The Iraq Natural History Museum (p-issn: 1017-8678 , E-issn: 2311-9799)
RECORDING OF THE MONOGENETIC TREMATODE SILURODISCOIDESMEDIACANTHUS (ACHMEROW, 1952) FOR THE FIRST TIME IN IRAQ ON THE GILLS OF THE CYPRINID FISH BARBUS LUTEUS
...Show More Authors

This paper describes the first occurrence of the monogenetic trematode Silurodiscoides
mediacanthus (Achmerow, 1952) in Iraq from gills of the cyprinid fish Barbus luteus from
Diyala river, Diyala province, Iraq. The description and measurements of this parasite were
given. In addition, key for the identification of the three species of Silurodiscoides, so far
recorded from freshwater fishes of Iraq, is included.

View Publication Preview PDF