High vehicular mobility causes frequent changes in the density of vehicles, discontinuity in inter-vehicle communication, and constraints for routing protocols in vehicular ad hoc networks (VANETs). The routing must avoid forwarding packets through segments with low network density and high scale of network disconnections that may result in packet loss, delays, and increased communication overhead in route recovery. Therefore, both traffic and segment status must be considered. This paper presents real-time intersection-based segment aware routing (RTISAR), an intersection-based segment aware algorithm for geographic routing in VANETs. This routing algorithm provides an optimal route for forwarding the data packets toward their destination by considering the traffic segment status when choosing the next intersection. RTISAR presents a new formula for assessing segment status based on connectivity, density, load segment, and cumulative distance toward the destination. A verity period mechanism is proposed to denote the projected period when a network failure is likely to occur in a particular segment. This mechanism can be calculated for each collector packet to minimize the frequency of RTISAR execution and to control the generation of collector packets. As a result, this mechanism minimizes the communication overhead generated during the segment status computation process. Simulations are performed to evaluate RTISAR, and the results are compared with those of intersection-based connectivity aware routing and traffic flow oriented routing. The evaluation results provided evidence that RTISAR outperforms in terms of packet delivery ratio, packet delivery delay, and communication overhead.
The need for participants’ performance assessments in academia and industry has been a growing concern. It has attendance, among other metrics, is a key factor in engendering a holistic approach to decision-making. For institutions or organizations where managing people is an important yet challenging task, attendance tracking and management could be employed to improve this seemingly time-consuming process while keeping an accurate attendance record. The manual/quasi-analog approach of taking attendance in some institutions could be unreliable and inefficient, leading to inaccurate computation of attendance rates and data loss. This work, therefore, proposes a system that employs embedded technology and a biometric/ w
... Show MoreThe study consists of video clips of all cars parked in the selected area. The studied camera height is1.5 m, and the video clips are 18video clips. Images are extracted from the video clip to be used for training data for the cascade method. Cascade classification is used to detect license plates after the training step. Viola-jones algorithm was applied to the output of the cascade data for camera height (1.5m). The accuracy was calculated for all data with different weather conditions and local time recoding in two ways. The first used the detection of the car plate based on the video clip, and the accuracy was 100%. The second is using the clipped images stored in the positive file, based on the training file (XML file), where the ac
... Show MoreData steganography is a technique used to hide data, secret message, within another data, cover carrier. It is considered as a part of information security. Audio steganography is a type of data steganography, where the secret message is hidden in audio carrier. This paper proposes an efficient audio steganography method that uses LSB technique. The proposed method enhances steganography performance by exploiting all carrier samples and balancing between hiding capacity and distortion ratio. It suggests an adaptive number of hiding bits for each audio sample depending on the secret message size, the cover carrier size, and the signal to noise ratio (SNR). Comparison results show that the proposed method outperforms state of the art methods
... Show MoreA hybrid cadmium sulfide nanoparticles (CdSNPs) electroluminescence (EL) device was fabricated by Phase – Segregated Method and characterized. It was fabricated as layers of (ITO/poly-TPD:CdS ) and (ITO/poly-TPD:CdS /Alq3). Poly-TPD is an excellent Hole Transport Layer (HTL), CdSNPs is an emitting layer and Alq3 as electron transport layer (ETL). The EL of Organic-Inorganic Light Emitting Diode (OILED) was studied at room temperature at 26V. This was achieved according to band-to-band transition in CdSNPs. From the I-V curve behavior, the addition of Alq3 layer decreased the transfer of electrons by about 250 times. The I-V behavior for (poly-TPD/CdS) is exponential with a maximum current of 45
... Show MoreA new series of N-acyl hydrazones (4a-g) derived from indole-3-propionic acid (IPA) were synthesized. These N-acyl hydrazones were prepared by the reaction of 3-(1H-indol-3-yl) propane hydrazide and aldehyde in the existence of glacial acetic acid as a catalyst. 1HNMR and FT-IR analyses were used to identify the synthesized compounds and they were in vitro evaluated as antibacterial agents against six different types of microorganisms by using well diffusion method. All the tested N-acyl hydrazones (4a-g) displayed moderate activity against the Gram-negative E.coli, comparable to that of Amoxicillin. Some of the tested N-acyl hydrazones also exhibited intermediate activity ag
... Show MoreFace detection is one of the important applications of biometric technology and image processing. Convolutional neural networks (CNN) have been successfully used with great results in the areas of image processing as well as pattern recognition. In the recent years, deep learning techniques specifically CNN techniques have achieved marvellous accuracy rates on face detection field. Therefore, this study provides a comprehensive analysis of face detection research and applications that use various CNN methods and algorithms. This paper presents ten of the most recent studies and illustrate the achieved performance of each method.