Preferred Language
Articles
/
YRb0j4oBVTCNdQwCT59C
A Hybrid Artificial Intelligence Model for Detecting Keratoconus
...Show More Authors

Machine learning models have recently provided great promise in diagnosis of several ophthalmic disorders, including keratoconus (KCN). Keratoconus, a noninflammatory ectatic corneal disorder characterized by progressive cornea thinning, is challenging to detect as signs may be subtle. Several machine learning models have been proposed to detect KCN, however most of the models are supervised and thus require large well-annotated data. This paper proposes a new unsupervised model to detect KCN, based on adapted flower pollination algorithm (FPA) and the k-means algorithm. We will evaluate the proposed models using corneal data collected from 5430 eyes at different stages of KCN severity (1520 healthy, 331 KCN1, 1319 KCN2, 1699 KCN3 and 579 KCN4) from Department of Ophthalmology and Visual Sciences, Paulista Medical School, Federal University of São Paulo, São Paulo in Brazil and 1531 eyes (Healthy = 400, KCN1 = 378, KCN2 = 285, KCN3 = 200, KCN4 = 88) from Department of Ophthalmology, Jichi Medical University, Tochigi in Japan and used several accuracy metrics including Precision, Recall, F-Score, and Purity. We compared the proposed method with three other standard unsupervised algorithms including k-means, Kmedoids, and Spectral cluster. Based on two independent datasets, the proposed model outperformed the other algorithms, and thus could provide improved identification of the corneal status of the patients with keratoconus.

Scopus Clarivate Crossref
View Publication
Publication Date
Sun Jan 01 2023
Journal Name
International Journal Of Data And Network Science
The effects of big data, artificial intelligence, and business intelligence on e-learning and business performance: Evidence from Jordanian telecommunication firms
...Show More Authors

This study sought to investigate the impacts of big data, artificial intelligence (AI), and business intelligence (BI) on Firms' e-learning and business performance at Jordanian telecommunications industry. After the samples were checked, a total of 269 were collected. All of the information gathered throughout the investigation was analyzed using the PLS software. The results show a network of interconnections can improve both e-learning and corporate effectiveness. This research concluded that the integration of big data, AI, and BI has a positive impact on e-learning infrastructure development and organizational efficiency. The findings indicate that big data has a positive and direct impact on business performance, including Big

... Show More
View Publication
Scopus (37)
Crossref (32)
Scopus Crossref
Publication Date
Wed Oct 30 2024
Journal Name
Internet Technology Letters
Using <scp>5G</scp> Standards for Smart Healthcare Applications and Designing an Artificial Intelligence‐Based Industry 4.0 Communication System
...Show More Authors
ABSTRACT<p>The introduction of Industry 4.0, to improve Internet of Things (IoT) standards, has sparked the creation of 5G, or highly sophisticated wireless networks. There are several barriers standing in the way of 5G green communication systems satisfying the expectations for faster networks, more user capacity, lower resource consumption, and cost‐effectiveness. 5G standards implementation would speed up data transmission and increase the reliability of connected devices for Industry 4.0 applications. The demand for intelligent healthcare systems has increased globally as a result of the introduction of the novel COVID‐19. Designing 5G communication systems presents research problems such as optimizing </p> ... Show More
Crossref (1)
Scopus Clarivate Crossref
Publication Date
Wed May 10 2023
Journal Name
Diagnostics
A Deep Feature Fusion of Improved Suspected Keratoconus Detection with Deep Learning
...Show More Authors

Detection of early clinical keratoconus (KCN) is a challenging task, even for expert clinicians. In this study, we propose a deep learning (DL) model to address this challenge. We first used Xception and InceptionResNetV2 DL architectures to extract features from three different corneal maps collected from 1371 eyes examined in an eye clinic in Egypt. We then fused features using Xception and InceptionResNetV2 to detect subclinical forms of KCN more accurately and robustly. We obtained an area under the receiver operating characteristic curves (AUC) of 0.99 and an accuracy range of 97–100% to distinguish normal eyes from eyes with subclinical and established KCN. We further validated the model based on an independent dataset with

... Show More
View Publication
Scopus (18)
Crossref (19)
Scopus Clarivate Crossref
Publication Date
Wed Feb 21 2024
Journal Name
Al-rafidain Journal Of Medical Sciences ( Issn 2789-3219 )
Perceptions of Senior Pharmacy Students Towards the Impact of Artificial Intelligence on University Education and Scientific Writing: A Qualitative Study
...Show More Authors

Background: The roles of AI in the academic community continue to grow, especially in the enhancement of learning outcomes and the improvement of writing quality and efficiency. Objectives: To explore in depth the experience of senior pharmacy students in using artificial intelligence for academic purposes. Methods: This qualitative study included face-to-face individual interviews with senior pharmacy students from March to May 2023 using a pre-planned interview guide of open-ended questions. All interviews were audio-recorded. Thematic analysis was used to analyze the data. Results: The results were obtained from 15 in-depth face-to-face interviews with senior pharmacy students (5th and 4th years). Eight participants were male, and seven

... Show More
View Publication Preview PDF
Scopus (3)
Crossref (1)
Scopus Crossref
Publication Date
Wed Feb 21 2024
Journal Name
Al-rafidain Journal Of Medical Sciences ( Issn 2789-3219 )
Perceptions of Senior Pharmacy Students Towards the Impact of Artificial Intelligence on University Education and Scientific Writing: A Qualitative Study
...Show More Authors

Background: The roles of AI in the academic community continue to grow, especially in the enhancement of learning outcomes and the improvement of writing quality and efficiency. Objectives: To explore in depth the experience of senior pharmacy students in using artificial intelligence for academic purposes. Methods: This qualitative study included face-to-face individual interviews with senior pharmacy students from March to May 2023 using a pre-planned interview guide of open-ended questions. All interviews were audio-recorded. Thematic analysis was used to analyze the data. Results: The results were obtained from 15 in-depth face-to-face interviews with senior pharmacy students (5th and 4th years). Eight participants were male, an

... Show More
Preview PDF
Scopus (3)
Crossref (1)
Scopus Crossref
Publication Date
Tue Apr 30 2024
Journal Name
Iraqi Journal Of Science
Topology-Based Modularity and Modularity Density for Detecting Protein Complexes: A Comparative Study
...Show More Authors

     Binary relations or interactions among bio-entities, such as proteins, set up the essential part of any living biological system. Protein-protein interactions are usually structured in a graph data structure called "protein-protein interaction networks" (PPINs). Analysis of PPINs into complexes tries to lay out the significant knowledge needed to answer many unresolved questions, including how cells are organized and how proteins work. However, complex detection problems fall under the category of non-deterministic polynomial-time hard (NP-Hard) problems due to their computational complexity. To accommodate such combinatorial explosions, evolutionary algorithms (EAs) are proven effective alternatives to heuristics in solvin

... Show More
View Publication
Scopus Crossref
Publication Date
Fri Jul 21 2023
Journal Name
Journal Of Engineering
A Modified 2D-Checksum Error Detecting Method for Data Transmission in Noisy Media
...Show More Authors

In data transmission a change in single bit in the received data may lead to miss understanding or a disaster. Each bit in the sent information has high priority especially with information such as the address of the receiver. The importance of error detection with each single change is a key issue in data transmission field.
The ordinary single parity detection method can detect odd number of errors efficiently, but fails with even number of errors. Other detection methods such as two-dimensional and checksum showed better results and failed to cope with the increasing number of errors.
Two novel methods were suggested to detect the binary bit change errors when transmitting data in a noisy media.Those methods were: 2D-Checksum me

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sun Jan 01 2023
Journal Name
Dental Hypotheses
Revolutionizing Systematic Reviews and Meta-analyses: The Role of Artificial Intelligence in Evidence Synthesis
...Show More Authors

View Publication
Scopus (17)
Crossref (9)
Scopus Clarivate Crossref
Publication Date
Wed Jun 16 2021
Journal Name
Cognitive Computation
Deep Transfer Learning for Improved Detection of Keratoconus using Corneal Topographic Maps
...Show More Authors
Abstract <p>Clinical keratoconus (KCN) detection is a challenging and time-consuming task. In the diagnosis process, ophthalmologists must revise demographic and clinical ophthalmic examinations. The latter include slit-lamb, corneal topographic maps, and Pentacam indices (PI). We propose an Ensemble of Deep Transfer Learning (EDTL) based on corneal topographic maps. We consider four pretrained networks, SqueezeNet (SqN), AlexNet (AN), ShuffleNet (SfN), and MobileNet-v2 (MN), and fine-tune them on a dataset of KCN and normal cases, each including four topographic maps. We also consider a PI classifier. Then, our EDTL method combines the output probabilities of each of the five classifiers to obtain a decision b</p> ... Show More
View Publication
Scopus (33)
Crossref (26)
Scopus Clarivate Crossref
Publication Date
Wed Jan 30 2019
Journal Name
Journal Of The College Of Education For Women
Detecting the effectiveness of two tools for detecting the talented from their teachers' points of view
...Show More Authors

Education specialists have differed about determining the best ways to detect the
talented. Since the appearance of the mental and psychological measurement movement, some
scholars adopted intelligence ratios as a criterion to identify the talented and others went to
rely on the degree of academic achievement. Each of these two methods has its own flaws and
mistakes and a large number of talented children were victims of these two methods.
Therefore the need to use other scales for the purpose of detection of talented children
appeared because they provide valuable information which may not be obtained easily
through objective tests and these scales are derived from consecutive studies of gifted andtalented children

... Show More
View Publication Preview PDF