Machine learning models have recently provided great promise in diagnosis of several ophthalmic disorders, including keratoconus (KCN). Keratoconus, a noninflammatory ectatic corneal disorder characterized by progressive cornea thinning, is challenging to detect as signs may be subtle. Several machine learning models have been proposed to detect KCN, however most of the models are supervised and thus require large well-annotated data. This paper proposes a new unsupervised model to detect KCN, based on adapted flower pollination algorithm (FPA) and the k-means algorithm. We will evaluate the proposed models using corneal data collected from 5430 eyes at different stages of KCN severity (1520 healthy, 331 KCN1, 1319 KCN2, 1699 KCN3 and 579 KCN4) from Department of Ophthalmology and Visual Sciences, Paulista Medical School, Federal University of São Paulo, São Paulo in Brazil and 1531 eyes (Healthy = 400, KCN1 = 378, KCN2 = 285, KCN3 = 200, KCN4 = 88) from Department of Ophthalmology, Jichi Medical University, Tochigi in Japan and used several accuracy metrics including Precision, Recall, F-Score, and Purity. We compared the proposed method with three other standard unsupervised algorithms including k-means, Kmedoids, and Spectral cluster. Based on two independent datasets, the proposed model outperformed the other algorithms, and thus could provide improved identification of the corneal status of the patients with keratoconus.
Emotion recognition has important applications in human-computer interaction. Various sources such as facial expressions and speech have been considered for interpreting human emotions. The aim of this paper is to develop an emotion recognition system from facial expressions and speech using a hybrid of machine-learning algorithms in order to enhance the overall performance of human computer communication. For facial emotion recognition, a deep convolutional neural network is used for feature extraction and classification, whereas for speech emotion recognition, the zero-crossing rate, mean, standard deviation and mel frequency cepstral coefficient features are extracted. The extracted features are then fed to a random forest classifier. In
... Show MoreIn recent years, with the rapid development of the current classification system in digital content identification, automatic classification of images has become the most challenging task in the field of computer vision. As can be seen, vision is quite challenging for a system to automatically understand and analyze images, as compared to the vision of humans. Some research papers have been done to address the issue in the low-level current classification system, but the output was restricted only to basic image features. However, similarly, the approaches fail to accurately classify images. For the results expected in this field, such as computer vision, this study proposes a deep learning approach that utilizes a deep learning algorithm.
... Show MoreThe state did not witness the emergence of independent bodies because of the nature of the ruling regimes that were characterized by political tyranny represented by the king at the time, as is the case with Greece and the Greeks and Persia and the Romans and others. As for the Islamic state, which emerged later, it saw the emergence of what looks like independent bodies that we see today, There was the so-called Diwan Al-Hesba and the Ombudsman's Office as an independent body from the Islamic State, which operated independently to support the oppressed and the equitable distribution of financial resources, even though it was headed by well-known governors of justice and honesty. A state in the modern era, many countries, especially in E
... Show MoreThis research sheds light on one of the important and vital topics for the banking sectors (technical requirements for the application of economic intelligence) namely by (Hardware, equipment, communication networks, software, databases). And the dimensions of the strategic success of the banks represented by(Customer satisfaction, customer trust, quality of service, growth) In the three Iraqi private banks, namely(Assyria International Investment, Mansour Investment, International Development Investment and Finance). Its implementation is an urgent necessity in order to improve the quality of its banking services to win the satisfaction of its customers and their confidence and then grow to achieve stra
... Show MoreBrainstorming is one of the fundamental and necessary concepts for practising the auditing profession, as auditing standards encouraged the implementation of brainstorming sessions to reach reasonable assurance about the validity of the evidence and information obtained by the auditor to detect fraud, as the implementation of brainstorming sessions and the practice of professional suspicion during the audit process lead To increase the quality of auditing and thus raise the financial community's confidence in the auditing profession again after it was exposed to several crises that led to the financial community losing confidence in the auditing profession.
The research aims to explain the effect of brain
... Show MoreBrainstorming is one of the fundamental and necessary concepts for practicing the auditing profession, as auditing standards encouraged the implementation of brainstorming sessions to reach reasonable assurance about the validity of the evidence and information obtained by the auditor to detect fraud, as the implementation of brainstorming sessions and the practice of professional suspicion during the audit process lead to increase the quality of auditing and thus raise the financial community's confidence in the auditing profession again after it was exposed to several crises that led to the financial community losing confidence in the auditing profession.
The research aims to explain the effect of brain
... Show MoreStereolithography (SLA) has become an essential photocuring 3D printing process for producing parts of complex shapes from photosensitive resin exposed to UV light. The selection of the best printing parameters for good accuracy and surface quality can be further complicated by the geometric complexity of the models. This work introduces multiobjective optimization of SLA printing of 3D dental bridges based on simple CAD objects. The effect of the best combination of a low-cost resin 3D printer’s machine parameter settings, namely normal exposure time, bottom exposure time and bottom layers for less dimensional deviation and surface roughness, was studied. A multiobjective optimization method was utilized, combining the Taguchi me
... Show MoreProblem: Cancer is regarded as one of the world's deadliest diseases. Machine learning and its new branch (deep learning) algorithms can facilitate the way of dealing with cancer, especially in the field of cancer prevention and detection. Traditional ways of analyzing cancer data have their limits, and cancer data is growing quickly. This makes it possible for deep learning to move forward with its powerful abilities to analyze and process cancer data. Aims: In the current study, a deep-learning medical support system for the prediction of lung cancer is presented. Methods: The study uses three different deep learning models (EfficientNetB3, ResNet50 and ResNet101) with the transfer learning concept. The three models are trained using a
... Show MoreAbstract
This research aims to design a multi-objective mathematical model to assess the project quality based on three criteria: time, cost and performance. This model has been applied in one of the major projects formations of the Saad Public Company which enables to completion the project on time at an additional cost that would be within the estimated budget with a satisfactory level of the performance which match with consumer requirements. The problem of research is to ensure that the project is completed with the required quality Is subject to constraints, such as time, cost and performance, so this requires prioritizing multiple goals. The project
... Show More