Preferred Language
Articles
/
YRb0j4oBVTCNdQwCT59C
A Hybrid Artificial Intelligence Model for Detecting Keratoconus
...Show More Authors

Machine learning models have recently provided great promise in diagnosis of several ophthalmic disorders, including keratoconus (KCN). Keratoconus, a noninflammatory ectatic corneal disorder characterized by progressive cornea thinning, is challenging to detect as signs may be subtle. Several machine learning models have been proposed to detect KCN, however most of the models are supervised and thus require large well-annotated data. This paper proposes a new unsupervised model to detect KCN, based on adapted flower pollination algorithm (FPA) and the k-means algorithm. We will evaluate the proposed models using corneal data collected from 5430 eyes at different stages of KCN severity (1520 healthy, 331 KCN1, 1319 KCN2, 1699 KCN3 and 579 KCN4) from Department of Ophthalmology and Visual Sciences, Paulista Medical School, Federal University of São Paulo, São Paulo in Brazil and 1531 eyes (Healthy = 400, KCN1 = 378, KCN2 = 285, KCN3 = 200, KCN4 = 88) from Department of Ophthalmology, Jichi Medical University, Tochigi in Japan and used several accuracy metrics including Precision, Recall, F-Score, and Purity. We compared the proposed method with three other standard unsupervised algorithms including k-means, Kmedoids, and Spectral cluster. Based on two independent datasets, the proposed model outperformed the other algorithms, and thus could provide improved identification of the corneal status of the patients with keratoconus.

Scopus Clarivate Crossref
View Publication
Publication Date
Wed Aug 17 2022
Journal Name
Applied Sciences
Predicting Fruit’s Sweetness Using Artificial Intelligence—Case Study: Orange
...Show More Authors

The manual classification of oranges according to their ripeness or flavor takes a long time; furthermore, the classification of ripeness or sweetness by the intensity of the fruit’s color is not uniform between fruit varieties. Sweetness and color are important factors in evaluating the fruits, the fruit’s color may affect the perception of its sweetness. This article aims to study the possibility of predicting the sweetness of orange fruits based on artificial intelligence technology by studying the relationship between the RGB values of orange fruits and the sweetness of those fruits by using the Orange data mining tool. The experiment has applied machine learning algorithms to an orange fruit image dataset and performed a co

... Show More
View Publication Preview PDF
Scopus (23)
Crossref (18)
Scopus Clarivate Crossref
Publication Date
Mon Sep 30 2024
Journal Name
Iraqi Journal Of Science
Attention-Deficit Hyperactivity Disorder Prediction by Artificial Intelligence Techniques
...Show More Authors

Attention-Deficit Hyperactivity Disorder (ADHD), a neurodevelopmental disorder affecting millions of people globally, is defined by symptoms of hyperactivity, impulsivity, and inattention that can significantly affect an individual's daily life. The diagnostic process for ADHD is complex, requiring a combination of clinical assessments and subjective evaluations. However, recent advances in artificial intelligence (AI) techniques have shown promise in predicting ADHD and providing an early diagnosis. In this study, we will explore the application of two AI techniques, K-Nearest Neighbors (KNN) and Adaptive Boosting (AdaBoost), in predicting ADHD using the Python programming language. The classification accuracies obtained w

... Show More
View Publication Preview PDF
Scopus (5)
Scopus Crossref
Publication Date
Tue Apr 02 2024
Journal Name
Engineering, Technology & Applied Science Research
Two Proposed Models for Face Recognition: Achieving High Accuracy and Speed with Artificial Intelligence
...Show More Authors

In light of the development in computer science and modern technologies, the impersonation crime rate has increased. Consequently, face recognition technology and biometric systems have been employed for security purposes in a variety of applications including human-computer interaction, surveillance systems, etc. Building an advanced sophisticated model to tackle impersonation-related crimes is essential. This study proposes classification Machine Learning (ML) and Deep Learning (DL) models, utilizing Viola-Jones, Linear Discriminant Analysis (LDA), Mutual Information (MI), and Analysis of Variance (ANOVA) techniques. The two proposed facial classification systems are J48 with LDA feature extraction method as input, and a one-dimen

... Show More
View Publication Preview PDF
Scopus (9)
Crossref (2)
Scopus Clarivate Crossref
Publication Date
Wed Dec 13 2017
Journal Name
Al-khwarizmi Engineering Journal
Design of a Kinematic Neural Controller for Mobile Robots based on Enhanced Hybrid Firefly-Artificial Bee Colony Algorithm
...Show More Authors

The paper present design of a control structure that enables integration of a Kinematic neural controller for trajectory tracking of a nonholonomic differential two wheeled mobile robot, then  proposes a Kinematic neural controller to direct a National Instrument mobile robot (NI Mobile Robot). The controller is to make the actual velocity of the wheeled mobile robot close the required velocity by guarantees that the trajectory tracking mean squire error converges at minimum tracking error. The proposed tracking control system consists of two layers; The first layer is a multi-layer perceptron neural network system that controls the mobile robot to track the required path , The second layer is an optimization layer ,which is impleme

... Show More
View Publication Preview PDF
Publication Date
Tue Dec 21 2021
Journal Name
Mendel
Hybrid Deep Learning Model for Singing Voice Separation
...Show More Authors

Monaural source separation is a challenging issue due to the fact that there is only a single channel available; however, there is an unlimited range of possible solutions. In this paper, a monaural source separation model based hybrid deep learning model, which consists of convolution neural network (CNN), dense neural network (DNN) and recurrent neural network (RNN), will be presented. A trial and error method will be used to optimize the number of layers in the proposed model. Moreover, the effects of the learning rate, optimization algorithms, and the number of epochs on the separation performance will be explored. Our model was evaluated using the MIR-1K dataset for singing voice separation. Moreover, the proposed approach achi

... Show More
View Publication
Scopus (4)
Scopus Crossref
Publication Date
Tue Nov 09 2021
Journal Name
Journal Of Accounting And Financial Studies ( Jafs )
Artificial intelligence in accounting education and its role in achieving sustainable development goals in the Kingdom of Bahrain/University of Applied Sciences as a model
...Show More Authors

The research aims to show the relationship between artificial intelligence in accounting education and its role in achieving sustainable development goals in the Kingdom of Bahrain. The research dealt with the role of artificial intelligence applications in accounting education at the University of Applied Sciences as a model for Bahraini universities to achieve sustainable development goals. The application of artificial intelligence in accounting education achieves seven of the seventeen sustainable development goals. It also concludes that there is an artificial intelligence infrastructure in the Kingdom of Bahrain, as it occupies a leading regional position in digital transformation, as Bahrain ranks first in the Arab world i

... Show More
View Publication Preview PDF
Publication Date
Mon Sep 09 2024
Journal Name
Научный Форум
the functioning of artificial intelligence for the development of communication skills among foreigners learning Russian
...Show More Authors

Preview PDF
Publication Date
Sun Jan 01 2023
Journal Name
Lecture Notes In Networks And Systems
Using Artificial Intelligence and Metaverse Techniques to Reduce Earning Management
...Show More Authors

This study aims to demonstrate the role of artificial intelligence and metaverse techniques, mainly logistical Regression, in reducing earnings management in Iraqi private banks. Synthetic intelligence approaches have shown the capability to detect irregularities in financial statements and mitigate the practice of earnings management. In contrast, many privately owned banks in Iraq historically relied on manual processes involving pen and paper for recording and posting financial information in their accounting records. However, the banking sector in Iraq has undergone technological advancements, leading to the Automation of most banking operations. Conventional audit techniques have become outdated due to factors such as the accuracy of d

... Show More
View Publication
Crossref (6)
Scopus Crossref
Publication Date
Fri Aug 16 2024
Journal Name
International Journal Of Mathematics And Computer Science
Artificial Intelligence Techniques to Identify Individuals through Palm Image Recognition
...Show More Authors

Artificial intelligence (AI) is entering many fields of life nowadays. One of these fields is biometric authentication. Palm print recognition is considered a fundamental aspect of biometric identification systems due to the inherent stability, reliability, and uniqueness of palm print features, coupled with their non-invasive nature. In this paper, we develop an approach to identify individuals from palm print image recognition using Orange software in which a hybrid of AI methods: Deep Learning (DL) and traditional Machine Learning (ML) methods are used to enhance the overall performance metrics. The system comprises of three stages: pre-processing, feature extraction, and feature classification or matching. The SqueezeNet deep le

... Show More
View Publication Preview PDF
Scopus (4)
Scopus Clarivate Crossref
Publication Date
Mon Jan 01 2024
Journal Name
International Journal Of Mathematics And Computer Science
Artificial Intelligence Techniques to Identify Individuals through Palm Image Recognition
...Show More Authors

Artificial intelligence (AI) is entering many fields of life nowadays. One of these fields is biometric authentication. Palm print recognition is considered a fundamental aspect of biometric identification systems due to the inherent stability, reliability, and uniqueness of palm print features, coupled with their non-invasive nature. In this paper, we develop an approach to identify individuals from palm print image recognition using Orange software in which a hybrid of AI methods: Deep Learning (DL) and traditional Machine Learning (ML) methods are used to enhance the overall performance metrics. The system comprises of three stages: pre-processing, feature extraction, and feature classification or matching. The SqueezeNet deep le

... Show More
Scopus (4)
Scopus Clarivate Crossref