Machine learning models have recently provided great promise in diagnosis of several ophthalmic disorders, including keratoconus (KCN). Keratoconus, a noninflammatory ectatic corneal disorder characterized by progressive cornea thinning, is challenging to detect as signs may be subtle. Several machine learning models have been proposed to detect KCN, however most of the models are supervised and thus require large well-annotated data. This paper proposes a new unsupervised model to detect KCN, based on adapted flower pollination algorithm (FPA) and the k-means algorithm. We will evaluate the proposed models using corneal data collected from 5430 eyes at different stages of KCN severity (1520 healthy, 331 KCN1, 1319 KCN2, 1699 KCN3 and 579 KCN4) from Department of Ophthalmology and Visual Sciences, Paulista Medical School, Federal University of São Paulo, São Paulo in Brazil and 1531 eyes (Healthy = 400, KCN1 = 378, KCN2 = 285, KCN3 = 200, KCN4 = 88) from Department of Ophthalmology, Jichi Medical University, Tochigi in Japan and used several accuracy metrics including Precision, Recall, F-Score, and Purity. We compared the proposed method with three other standard unsupervised algorithms including k-means, Kmedoids, and Spectral cluster. Based on two independent datasets, the proposed model outperformed the other algorithms, and thus could provide improved identification of the corneal status of the patients with keratoconus.
Segmented regression consists of several sections separated by different points of membership, showing the heterogeneity arising from the process of separating the segments within the research sample. This research is concerned with estimating the location of the change point between segments and estimating model parameters, and proposing a robust estimation method and compare it with some other methods that used in the segmented regression. One of the traditional methods (Muggeo method) has been used to find the maximum likelihood estimator in an iterative approach for the model and the change point as well. Moreover, a robust estimation method (IRW method) has used which depends on the use of the robust M-estimator technique in
... Show MoreType 2 diabetes mellitus which abbreviate as T2DM is a complex endocrine and metabolic disorder arisingfrom genetic and environmental factors interaction which in turn induce various degrees of insulin functionalalteration on peripheral tissues. Globally, T2DM has develop into a public health problem. Therefore, Thestudy included (75) patients(37 female and 38 males) suffering from T2DM who visit al-kadhimiya teachinghospital with age range 20-80 years and (70) as healthy controls with age range 20-70 years. All studiedgroups were evaluated CMV IgG by ELISA,B. urea, S. Creatinine, cholesterol and triglyceride the resultsshowed that B.urea, S.creatinine and serum cholesterol showed a non-significant differences between studiedgroup,
... Show MoreAfamin, which is a human plasma glycoprotein, a putative multifunctional transporter of hydrophobic molecules and a marker for metabolic syndrome. Afamin concentration have been proposed to have a significant role as a predictor of metabolic disorders. Since NAFLD is associated with metabolic risk factors, e.g., dyslipidemia, insulin resistance and visceral obesity, it is considered as the hepatic manifestation of the metabolic syndrome. The objective of this study is to determine Afamin levels in hypothyroid patients with and without fatty liver disease and compare the results with controls. Also to study the relationship of Afamin level with the Anthropometric and Clinical Features (Age, Gender, BMI and Duration of Hypothyroidism) , Serum
... Show MoreThe aim of this study is to develop a novel framework for managing risks in smart supply chains by enhancing business continuity and resilience against potential disruptions. This research addresses the growing uncertainty in supply chain environments, driven by both natural phenomena-such as pandemics and earthquakes—and human-induced events, including wars, political upheavals, and societal transformations. Recognizing that traditional risk management approaches are insufficient in such dynamic contexts, the study proposes an adaptive framework that integrates proactive and remedial measures for effective risk mitigation. A fuzzy risk matrix is employed to assess and analyze uncertainties, facilitating the identification of disr
... Show MoreThe effects of T-shaped fins on the improvement of phase change materials (PCM) melting are numerically investigated in vertical triple-tube storage containment. The PCM is held in the middle pipe of a triple-pipe heat exchanger while the heat transfer fluid flows through the internal and external pipes. The dimension effects of the T-shaped fins on the melting process of the PCM are investigated to determine the optimum case. Results indicate that while using T-shaped fins improves the melting performance of the PCM, the improvement potential is mainly governed by the fin’s body rather than the head. Hence, the proposed T-shaped fin did not noticeably improve melting at the bottom of the PCM domain; additionally, a flat fin is ad
... Show MoreIn this paper, a discussion of the principles of stereoscopy is presented, and the phases
of 3D image production of which is based on the Waterfall model. Also, the results are based
on one of the 3D technology which is Anaglyph and it's known to be of two colors (red and
cyan).
A 3D anaglyph image and visualization technologies will appear as a threedimensional
by using a classes (red/cyan) as considered part of other technologies used and
implemented for production of 3D videos (movies). And by using model to produce a
software to process anaglyph video, comes very important; for that, our proposed work is
implemented an anaglyph in Waterfall model to produced a 3D image which extracted from a
video.
The study includes building a 3-D geological model, which involves get the Petrophysical properties as (porosity, permeability and water saturation). Effective Porosity, water saturation results from log interpretation process and permeability from special correlation using core data and log data. Clay volume can be calculated by six ways using IP software v3.5 the best way was by using gamma Ray. Also, Water Resistivity, flushed zone saturation and bulk volume analysis determined through geological study. Lithology determined in several ways using M-N matrix Identification, Density-Neutron and Sonic-Neutron cross plots. The cut off values are determined by Using EHC (Equivalent Hydra