Tigris River is the lifeline that supplies a great part of Iraq with water from north to south. Throughout its entire length, the river is battered by various types of pollutants such as wastewater effluents from municipal, industrial, agricultural activities, and others. Hence, the water quality assessment of the Tigris River is crucial in ensuring that appropriate and adequate measures are taken to save the river from as much pollution as possible. In this study, six water treatment plants (WTPs) situated on the two-banks of the Tigris within Baghdad City were Al Karkh; Sharq Dijla; Al Wathba; Al Karama; Al Doura, and Al Wahda from northern Baghdad to its south, that selected to determine the removal efficiency of turbidity and the water quality index used to assess the quality of water for drinking purposes, in addition to finding the model based on past information to predict the quality of treated wastewater produced in each WTP using an artificial neural network (ANN) approach. The selected parameters for this study were turbidity, total hardness, total solids, suspended solids, and alkalinity. The results showed that all the WTPs possessed a high rate of efficiency in the removal of turbidity from raw water. Also, the results of the water quality index for all WTPs were classified over a study period of three years from 2015 to 2017 as being a good water quality and based on these results, the water treatment plants can be considered to be doing efficient water treatment process. The ANN model has been found at all WTPs to have a coefficient of determination (R2) for expected models was more than 0.7 to provide a WQI prediction tool that can be used with a moderate level of predictive acceptance to describe the suitability of WTP water quality for drinking purposes.
Biometrics represent the most practical method for swiftly and reliably verifying and identifying individuals based on their unique biological traits. This study addresses the increasing demand for dependable biometric identification systems by introducing an efficient approach to automatically recognize ear patterns using Convolutional Neural Networks (CNNs). Despite the widespread adoption of facial recognition technologies, the distinct features and consistency inherent in ear patterns provide a compelling alternative for biometric applications. Employing CNNs in our research automates the identification process, enhancing accuracy and adaptability across various ear shapes and orientations. The ear, being visible and easily captured in
... Show MoreThe research was conducted between 2017 and 2019 at the College of Agricultural Engineering Sciences and Laboratory of Plant Tissue Culture for Postgraduate Studies at the University of Baghdad. One experiment used a totally random design. The experiment examined the effects of PEG (Polyethylene glycol) at concentrations of 0, 2, 4, 6, and 8% on the development of three sunflower types (Ishaqi-1, Aqmar, and AL-Haja) exposed to UV-C rays for 40 minutes as a result of the growing of the juvenile peduncle outside the live body. The aim of the study was to better comprehend the physiological and biochemical changes caused by water stress on the callus of several sunfl
Smart water flooding (low salinity water flooding) was mainly invested in a sandstone reservoir. The main reasons for using low salinity water flooding are; to improve oil recovery and to give a support for the reservoir pressure.
In this study, two core plugs of sandstone were used with different permeability from south of Iraq to explain the effect of water injection with different ions concentration on the oil recovery. Water types that have been used are formation water, seawater, modified low salinity water, and deionized water.
The effects of water salinity, the flow rate of water injected, and the permeability of core plugs have been studied in order to summarize the best conditions of low salinity
... Show MoreErbil city is located in the northern Iraq with a population of over one million people. Due to water crises farmers usually use wastewater and well water for the agricultural production. In this study six stations were designed to sample waste water and three from well water to define waste water and ground water characteristics. In this study, Residual Na+ Carbonate, Mg++ hazard, salinity hazard, Kelley index, %sodium, total hardness, permeability index, potential salinity, sodium adsorption ratio, and Irrigation Water Quality Index (IWQI) were determined. The order of average cation concentrations in water was Mg2+> Ca2+ > Na+ > K+. While the proportion of main
... Show MoreThe current research aims to adopt production quality decisions as the most important decisions , because they are accompanied by customer satisfaction through monitoring the quality of drinking water in iraq which reach through the pipeline network associated with water treatment projects of Tigris and Euphrates rivers. One of the indicators of quality control was the drawing of the C-chart by specifying the central line and the upper and lower limit of the control and the diagnosis of whether the production system as a whole within the scope of quality control or not and determine the strength and significance of the correlation between the quantities of water And actual needs for customers , the research has reached a number o
... Show More
The objective of this study was to develop neural network algorithm, (Multilayer Perceptron), based correlations for the prediction overall volumetric mass-transfer coefficient (kLa), in slurry bubble column for gas-liquid-solid systems. The Multilayer Perceptron is a novel technique based on the feature generation approach using back propagation neural network. Measurements of overall volumetric mass transfer coefficient were made with the air - Water, air - Glycerin and air - Alcohol systems as the liquid phase in bubble column of 0.15 m diameter. For operation with gas velocity in the range 0-20 cm/sec, the overall volumetric mass transfer coefficient was found to decrease w
... Show MoreThis study aims to simulate and assess the hydraulic characteristics and residual chlorine in the water supply network of a selected area in Al-Najaf City using WaterGEMS software. Field and laboratory work were conducted to measure the pressure heads and velocities, and water was sampled from different sites in the network and then tested to estimate chlorine residual. Records and field measurements were utilized to validate WaterGEMS software. Good agreement was obtained between the observed and predicted values of pressure with RMSE range between 0.09–0.17 and 0.08–0.09 for chlorine residual. The results of the analysis of water distribution systems (WDS) during maximum demand
Field experiment was conducted by using two fertilization systems (i.e.) biofertilizers (inoculation with Pseudomonas putida and with Azotobacter chroococcum and non - inoculation) and chemical fertilization (100%, 50% and 25% of recommended by Ministry of Agriculture) to study the influence of these system and interaction on water and grain yield productivity, some growth phytohorones and number of bacterial cells in soil rizosphere of root of wheat crop under water scarcity. The result showed that the integrate fertilization (inoculation with Pseudomonas putida and Azotobacter chroococcum bacterial + 50% of the recommended chemical fertilizer) recorded 5.70 and 5.55 t ha-1, respectively with reducing the chemical fertilizer app
... Show MoreThe purpose of this research is to investigate the impact of corrosive environment (corrosive ferric chloride of 1, 2, 5, 6% wt. at room temperature), immersion period of (48, 72, 96, 120, 144 hours), and surface roughness on pitting corrosion characteristics and use the data to build an artificial neural network and test its ability to predict the depth and intensity of pitting corrosion in a variety of conditions. Pit density and depth were calculated using a pitting corrosion test on carbon steel (C-4130). Pitting corrosion experimental tests were used to develop artificial neural network (ANN) models for predicting pitting corrosion characteristics. It was found that artificial neural network models were shown to be
... Show More