Gypseous soils are common in several regions in the world including Iraq, where more than 28.6% of its surface is covered with this type of soil. This soil, with high gypsum content, causes different problems for construction and strategic projects. As a result of water flow through the soil mass, the permeability and chemical arrangement of these soils varies with time due to the solubility and leaching of gypsum. In this study, the soil of 36% gypsum content, was taken from one location about 100 km southwest of Baghdad, where the samples were taken from depths (0.5 - 1) m below the natural ground and mixed with (3%, 6%, 9%) of Copolymer and Novolac polymer to improve the engineering properties that include: collapsibility, permeability and compaction parameter. Results of experimental work showed noticeable improvement of collapsibility and permeability for the soil treated with polymer materials compared to untreated soil. Adding 3% of polymer (copolymer and novolac polymer) materials gave the best improvement in collapsibility which reached to (44.5 and 46%), respectively, in 3 hours. The improvement in permeability reached to 98.6% copolymer and 86.2% novolac polymer in 1 day.
The use of blended cement in concrete provides economic, energy savings, and ecological benefits, and also provides. Improvement in the properties of materials incorporating blended cements. The major aim of this investigation is to develop blended cement technology using grinded local rocks . The research includes information on constituent materials, manufacturing processes and performance characteristics of blended cements made with replacement (10 and 20) % of grinded local rocks (limestone, quartzite and porcelinite) from cement. The main conclusion of this study was that all types of manufactured blended cement conformed to the specification according to ASTM C595-12 (chemical and physical requirements). The percentage of the compress
... Show MoreThe use of blended cement in concrete provides economic, energy savings, and ecological benefits, and also provides. Improvement in the properties of materials incorporating blended cements. The major aim of this investigation is to develop blended cement technology using grinded local rocks . The research includes information on constituent materials, manufacturing processes and performance characteristics of blended cements made with replacement (10 and 20) % of grinded local rocks (limestone, quartzite and porcelinite) from cement. The main conclusion of this study was that all types of manufactured blended cement conformed to the specification according to ASTM C595-12 (chemical and physical requirements). The percentage of the compress
... Show MoreThe use of blended cement in concrete provides economic, energy savings, and ecological benefits, and also provides. Improvement in the properties of materials incorporating blended cements. The major aim of this investigation is to develop blended cement technology using grinded local rocks . The research includes information on constituent materials, manufacturing processes and performance characteristics of blended cements made with replacement (10 and 20) % of grinded local rocks (limestone, quartzite and porcelinite) from cement.
The main conclusion of this study was that all ty
... Show MoreThe clayey soils have the capability to swell and shrink with the variation in moisture content. Soil stabilization is a well-known technique, which is implemented to improve the geotechnical properties of soils. The massive quantities of waste materials are resulting from modern industry methods create disposal hazards in addition to environmental problems. The steel industry has a waste that can be used with low strength and weak engineering properties soils. This study is carried out to evaluate the effect of steel slag (SS) as a by-product of the geotechnical properties of clayey soil. A series of laboratory tests were conducted on natural and stabilized soils. SS was added by 0, 2.5, 5, 10, 15, and 20% to the soil.
... Show MoreThis paper describes the geotechnical properties of Al-Ammarah soil of Ammarah city in Messan Governorate-southern parts of Iraq. Data and other information taken from numbers of geotechnical reports that performed under the supervision of Consulting Engineering Bureau of Baghdad University. This research is devoted to study the correlation between different physical properties such as (LL, PI, LI, n,t, e) with different mechanical properties such as (qu, cc, cs, SPT). The correlation is verified using simple regression analysis. From the regression results it was found that there is direct correlation between different parameters. By using the correlation-with some information- preliminary investigation stages and studies of any s
... Show MoreThis paper describes the geotechnical properties of Al-Ammarah soil of Ammarah city in Messan Governorate-southern parts of Iraq. Data and other information taken from numbers of geotechnical reports that performed under the supervision of Consulting Engineering Bureau of Baghdad University. This research is devoted to study the correlation between different physical properties such as (LL, PI, LI, n,t, e) with different mechanical properties such as (qu, cc, cs, SPT). The correlation is verified using simple regression analysis. From the regression results it was found that there is direct correlation between different parameters. By using the correlation-with some information- preliminary investigation stages and studies of any s
... Show More