Green buildings are considered more efficient than traditional buildings due to the incorporated techniques and the multidisciplinary specializations required to comply with their specifications, in addition to the advanced commissioning, which undergoes before handing over the buildings to the owners to ensure requirements conformance. As a result, the appropriate selection of a project delivery system acts as the essential factor that affects the performance of the project. This research aims at building a system that helps to select the best method to implement green buildings. Through studying the recent research approaches in project delivery systems, the factors that affect the selection of the optimal implementation method for green buildings have been identified; expert interviews have been done to study and analyze the main influential factors that affect the selection of the best method for implementing green buildings. The results of interviews indicate that the main influential factors are as follows: The occurrence of economic crises in the country, availability of financial capacity for the contractor and the owner, the lack of previous experience in similar projects, hiring an incompetent contractor, differences between design drawings among all disciplines, and providing qualified contractors, subcontractors, suppliers and craftsmen with sufficient qualifications early in the project. Depending on these main factors, a software system is built to choose the best delivery system for green building projects. This research encourages future works to focus on the quality and performance of green buildings and lays out the foundation for academic researchers to explore new techniques for evaluating the project delivery systems as well as supporting the decision-makers to choose the best.
Soil water retention curves (SWRCs) are crucial for characterizing soil moisture dynamics and are particularly relevant in the context of irrigation management. A study was carried out to obtain the SWRC, inflection point, S index, pore size distribution curve, macro porosity, and air capacity from samples submitted to saturation and re-saturation processes. Five different-texture disturbed soil samples Sandy Loam, Loam, Sandy Clay Loam, Silt Loam, and Clay were collected. After obtaining SWRC, each air-dried soil samples were submitted to particle size distribution and clay dispersed in water analyses to verify the soil lost clay. The experimental design was completely randomized with three replications using two processes of SWRC (saturat
... Show MoreMost of the medical datasets suffer from missing data, due to the expense of some tests or human faults while recording these tests. This issue affects the performance of the machine learning models because the values of some features will be missing. Therefore, there is a need for a specific type of methods for imputing these missing data. In this research, the salp swarm algorithm (SSA) is used for generating and imputing the missing values in the pain in my ass (also known Pima) Indian diabetes disease (PIDD) dataset, the proposed algorithm is called (ISSA). The obtained results showed that the classification performance of three different classifiers which are support vector machine (SVM), K-nearest neighbour (KNN), and Naïve B
... Show MoreThe flexible joint robot manipulators provide various benefits, but also present many control challenges such as nonlinearities, strong coupling, vibration, etc. This paper proposes optimal second order integral sliding mode control (OSOISMC) for a single link flexible joint manipulator to achieve robust and smooth performance. Firstly, the integral sliding mode control is designed, which consists of a linear quadratic regulator (LQR) as a nominal control, and switching control. This control guarantees the system robustness for the entire process. Then, a nonsingularterminal sliding surface is added to give a second order integral sliding mode control (SOISMC), which reduces chartering effect and gives the finite time convergence as well. S
... Show MoreMachine learning has a significant advantage for many difficulties in the oil and gas industry, especially when it comes to resolving complex challenges in reservoir characterization. Permeability is one of the most difficult petrophysical parameters to predict using conventional logging techniques. Clarifications of the work flow methodology are presented alongside comprehensive models in this study. The purpose of this study is to provide a more robust technique for predicting permeability; previous studies on the Bazirgan field have attempted to do so, but their estimates have been vague, and the methods they give are obsolete and do not make any concessions to the real or rigid in order to solve the permeability computation. To
... Show MoreA hand gesture recognition system provides a robust and innovative solution to nonverbal communication through human–computer interaction. Deep learning models have excellent potential for usage in recognition applications. To overcome related issues, most previous studies have proposed new model architectures or have fine-tuned pre-trained models. Furthermore, these studies relied on one standard dataset for both training and testing. Thus, the accuracy of these studies is reasonable. Unlike these works, the current study investigates two deep learning models with intermediate layers to recognize static hand gesture images. Both models were tested on different datasets, adjusted to suit the dataset, and then trained under different m
... Show MoreAn optoelectronic flow-through detector for active ingredients determination in pharmaceutical formulations is explained. Two consecutive compact photodetector’s devices operating according to light-emitting diodes-solar cells concept where the LEDs acting as a light source and solar cells for measuring the attenuated light of the incident light at 180˚ have been developed. The turbidimetric detector, fabricated of ten light-emitting diodes and five solar cells only, integrated with a glass flow cell has been easily adapted in flow injection analysis manifold system. For active ingredients determination, the developed detector was successfully utilized for the development and validation of an analytical method for warfarin determination
... Show MoreInnovative laboratory research and fluid breakthroughs have improved carbonate matrix stimulation technology in the recent decade. Since oil and gas wells are stimulated often to increase output and maximum recovery, this has resulted in matrix acidizing is a less costly alternative to hydraulic fracturing; therefore, it is widely employed because of its low cost and the fact that it may restore damaged wells to their previous productivity and give extra production capacity. Limestone acidizing in the Mishrif reservoir has never been investigated; hence research revealed fresh insights into this process. Many reports have stated that the Ahdeb oil field's Mishrif reservoir has been unable to be stimulated due to high inj
... Show More