Green buildings are considered more efficient than traditional buildings due to the incorporated techniques and the multidisciplinary specializations required to comply with their specifications, in addition to the advanced commissioning, which undergoes before handing over the buildings to the owners to ensure requirements conformance. As a result, the appropriate selection of a project delivery system acts as the essential factor that affects the performance of the project. This research aims at building a system that helps to select the best method to implement green buildings. Through studying the recent research approaches in project delivery systems, the factors that affect the selection of the optimal implementation method for green buildings have been identified; expert interviews have been done to study and analyze the main influential factors that affect the selection of the best method for implementing green buildings. The results of interviews indicate that the main influential factors are as follows: The occurrence of economic crises in the country, availability of financial capacity for the contractor and the owner, the lack of previous experience in similar projects, hiring an incompetent contractor, differences between design drawings among all disciplines, and providing qualified contractors, subcontractors, suppliers and craftsmen with sufficient qualifications early in the project. Depending on these main factors, a software system is built to choose the best delivery system for green building projects. This research encourages future works to focus on the quality and performance of green buildings and lays out the foundation for academic researchers to explore new techniques for evaluating the project delivery systems as well as supporting the decision-makers to choose the best.
There are a few studies that discuss the medical causes for diabetic foot (DF) ulcerations in Iraq, one of them in Wasit province. The aim of our study was to analyze the medical, therapeutic, and patient risk factors for developing DF ulcerations among diabetic patients in Baghdad, Iraq.
Rapid worldwide urbanization and drastic population growth have increased the demand for new road construction, which will cause a substantial amount of natural resources such as aggregates to be consumed. The use of recycled concrete aggregate could be one of the possible ways to offset the aggregate shortage problem and reduce environmental pollution. This paper reports an experimental study of unbound granular material using recycled concrete aggregate for pavement subbase construction. Five percentages of recycled concrete aggregate obtained from two different sources with an originally designed compressive strength of 20–30 MPa as well as 31–40 MPa at three particle size levels, i.e., coarse, fine, and extra fine, were test
... Show More