Preferred Language
Articles
/
YRYucIcBVTCNdQwCNEpT
Prediction of the Bending Strength of a Composite Steel Beam–Slab Member Filled with Recycled Concrete
...Show More Authors

This study investigated the structural behavior of a beam–slab member fabricated using a steel C-Purlins beam carrying a profile steel sheet slab covered by a dry board sheet filled with recycled aggregate concrete, called a CBPDS member. This concept was developed to reduce the cost and self-weight of the composite beam–slab system; it replaces the hot-rolled steel I-beam with a steel C-Purlins section, which is easier to fabricate and weighs less. For this purpose, six full-scale CBPDS specimens were tested under four-point static bending. This study investigated the effect of using double C-Purlins beams face-to-face as connected or separated sections and the effect of using concrete material that contains different recycled aggregates to replace raw aggregates. Test results confirmed that using double C-Purlins beams with a face-to-face configuration achieved better concrete confinement behavior than a separate configuration did; specifically, a higher bending capacity and ductility index by about +10.7% and +15.7%, respectively. Generally, the overall bending behavior of the tested specimens was not significantly affected when the infill concrete’s raw aggregates were replaced with 50% and 100% recycled aggregates; however, their bending capacities were reduced, at −8.0% and −11.6%, respectively, compared to the control specimen (0% recycled aggregates). Furthermore, a new theoretical model developed during this study to predict the nominal bending strength of the suggested CBPDS member showed acceptable mean value (0.970) and standard deviation (3.6%) compared with the corresponding test results.

Crossref
View Publication
Publication Date
Sat Aug 21 2021
Journal Name
Engineering, Technology & Applied Science Research
The Impact of Hybrid Fibers on Punching Shear Strength of Concrete Flat Plates Exposed to Fire
...Show More Authors

This study presents an investigation about the effect of fire flame on the punching shear strength of hybrid fiber reinforced concrete flat plates. The main considered parameters are the fiber type (steel or glass) and the burning steady-state temperatures (500 and 600°C). A total of 9 half-scale flat plate specimens of dimensions 1500mm×1500mm×100mm and 1.5% fiber volume fraction were cast and divided into 3 groups. Each group consisted of 3 specimens that were identical to those in the other groups. The specimens of the second and the third groups were subjected to fire flame influence for 1 hour and steady-state temperature of 500 and 600°C respectively. Regarding the cooling process, water sprinkling was applied directly aft

... Show More
View Publication
Crossref (10)
Crossref
Publication Date
Wed May 01 2019
Journal Name
Iop Conf. Series: Materials Science And Engineering
Fire flame effect on the compressive strength of reactive powder concrete using different methods of cooling
...Show More Authors

This research foxed on the effect of fire flame of different burning temperatures (300, 400 and 500)oC on the compressive strength of reactive powder concrete (RPC).The steady state duration of the burning test was (60)min. Local consuming material were used to mixed a RPC of compressive strength around (100) MPa. The tested specimens were reinforced by (3.0) cm hooked end steel fiber of (1100) MPa yield strength. Three steel fiber volume fraction were adopted in this study (0, 1.0and 1.5)% and two cooling process were included, gradual and sudden. It was concluding that increasing burning temperature decreases the residual compressive strength for RPC specimens of(0%) steel fiber volume fraction by (12.16, 19.46&24.49) and (18.20, 27.77 &3

... Show More
Scopus (6)
Crossref (3)
Scopus Clarivate Crossref
Publication Date
Mon Feb 01 2021
Journal Name
Civil Engineering Journal
Structural Behavior of BubbleDeck Slab under Uniformly Distributed Load
...Show More Authors

In structural construction fields, reducing the overall self-weight of the structure is considered a primary objective and substantial challenge in the civil engineering field, particularly in earthquake-affected buildings and tall buildings. Different techniques were implemented to attain this goal; one of them is setting voids in a specific position through the structure, just like a voided slab or BubbleDeck slab. The main objective of this research is to study the structural behavior of BubbleDeck reinforced concrete slabs under the effect of static uniformly distributed load. The experimental program involved testing five fixed-end supported two-way solid and BubbleDeck slabs of dimensions 2500×2500×200 mm. The considered par

... Show More
Scopus (9)
Crossref (8)
Scopus Clarivate Crossref
Publication Date
Tue Nov 01 2022
Journal Name
Journal Of Engineering
Finite Element Modeling of One-Way Recycled Aggregate Concrete Slabs Strengthened using Near-Surface Mounted CFRPs under Repeated Loading
...Show More Authors

This study offers numerical simulation results using the ABAQUS/CAE version 2019 finite element computer application to examine the performance, and residual strength of eight recycle aggregate RC one-way slabs. Six strengthened by NSM CFRP plates were presented to study the impact of several parameters on their structural behavior. The experimental results of four selected slabs under monotonic load, plus one slab under repeated load, were validated numerically. Then the numerical analysis was extended to different parameters investigation, such as the impact of added CFRP length on ultimate load capacity and load-deflection response and the impact of concrete compressive strength value on the structural performance of

... Show More
View Publication Preview PDF
Crossref (2)
Crossref
Publication Date
Sat Aug 21 2021
Journal Name
Engineering, Technology & Applied Science Research
The Response of a Highly Skewed Steel I-Girder Bridge with Different Cross-Frame Connections
...Show More Authors

Braces in straight bridge systems improve the lateral-torsional buckling resistance of the girders by reducing the unbraced length, while in horizontally curved and skew bridges, the braces are primary structural elements for controlling deformations by engaging adjacent girders to act as a system to resist the potentially large forces and torques caused by the curved or skewed geometry of the bridge. The cross-frames are usually designed as torsional braces, which increase the overall strength and stiffness of the individual girders by creating a girder system that translates and rotates as a unit along the bracing lines. However, when they transmit the truck’s live load forces, they can produce fatigue cracks at their connection

... Show More
View Publication
Crossref (5)
Crossref
Publication Date
Fri Nov 05 2021
Journal Name
Journal Of Architectural Environment & Structural Engineering Research
Strength & Conduct of Reinforced Concrete Corner Joint under Negative Moment Effect
...Show More Authors

The aim of our study is to reveal the effect of steel reinforcement details,tensile steel reinforcement ratio, compressed reinforcing steel ratio,reinforcing steel size, corner joint shape on the strength of reinforcedconcrete Fc' and delve into it for the most accurate details and concreteconnections about the behavior and resistance of the corner joint ofreinforced concrete, Depending on the available studies and sources inaddition to our study, we concluded that each of these effects had a clearrole in the behavior and resistance of the corner joint of reinforced concreteunder the influence of the negative moment and yield stress. A studyof the types of faults that can be reinforced angle joints obtains detailsand conditions of c

... Show More
View Publication
Crossref (14)
Crossref
Publication Date
Tue Jan 28 2014
Journal Name
Journal Of Energy And Power Engineering
Comparison between Two Vertical Enclosures Filled With Porous Media under the Effect of Radiation and Magnetohydrodynamics
...Show More Authors

View Publication
Crossref
Publication Date
Tue Jan 15 2002
Journal Name
Abhath Al- Yarmouk [basic Sciences And Engineering]
Computer Program for Predicting Ultimate Strength of Structural Concrete Sections of General Shape
...Show More Authors

Publication Date
Fri Dec 01 2023
Journal Name
Case Studies In Construction Materials
Experimental and environmental investigations of the impacts of wood sawdust on the performance of reinforced concrete composite beams
...Show More Authors

View Publication Preview PDF
Scopus (17)
Crossref (4)
Scopus Clarivate Crossref
Publication Date
Sun Jan 01 2017
Journal Name
Advances In Civil Engineering
Behavior of Strengthened Composite Prestressed Concrete Girders under Static and Repeated Loading
...Show More Authors

The use of external posttensioning technique for strengthening reinforced concrete girders has been considerably studied by many researchers worldwide. However, no available data are seen regarding strengthening full-scale composite prestressed concrete girders with external posttensioned technique under static and repeated loading. In this research, four full-scale composite prestressed I-shape girders of 16 m span were fabricated and tested under static and repeated loading up to failure. Accordingly, two girders were externally strengthened with posttensioned strands, while the other two girders were left without strengthening. The experimental tests include deflection, cracking load, ultimate strength and strains at midspan, a

... Show More
View Publication
Scopus (18)
Crossref (10)
Scopus Clarivate Crossref