This study investigated the structural behavior of a beam–slab member fabricated using a steel C-Purlins beam carrying a profile steel sheet slab covered by a dry board sheet filled with recycled aggregate concrete, called a CBPDS member. This concept was developed to reduce the cost and self-weight of the composite beam–slab system; it replaces the hot-rolled steel I-beam with a steel C-Purlins section, which is easier to fabricate and weighs less. For this purpose, six full-scale CBPDS specimens were tested under four-point static bending. This study investigated the effect of using double C-Purlins beams face-to-face as connected or separated sections and the effect of using concrete material that contains different recycled aggregates to replace raw aggregates. Test results confirmed that using double C-Purlins beams with a face-to-face configuration achieved better concrete confinement behavior than a separate configuration did; specifically, a higher bending capacity and ductility index by about +10.7% and +15.7%, respectively. Generally, the overall bending behavior of the tested specimens was not significantly affected when the infill concrete’s raw aggregates were replaced with 50% and 100% recycled aggregates; however, their bending capacities were reduced, at −8.0% and −11.6%, respectively, compared to the control specimen (0% recycled aggregates). Furthermore, a new theoretical model developed during this study to predict the nominal bending strength of the suggested CBPDS member showed acceptable mean value (0.970) and standard deviation (3.6%) compared with the corresponding test results.
Background: This clinical trial aims to evaluate the color changes of direct resin composite veneer (DCV) restorations based on spectrophotometric analysis of 4 different types of resin composites between the baseline immediately after polishing and after one year of follow-up. Materials and methods: 28 patients were assessed for eligibility for participation, aged between 18 and 38 years old, who indicated for DCV restorations in anterior maxillary teeth were considered for participation in this study. In total, 25 patients who met the inclusion criteria were selected (6 males and 19 females, mean age: 20.9 at the time of restoration placement), and 3 patients were excluded. Partic
... Show MoreDue to the advantages over other metallic materials, such as superior corrosion resistance, excellent biocompatibility, and favorable mechanical properties, titanium, its alloys and related composites, are frequently utilized in biomedical applications, particularly in orthopedics and dentistry. This work focuses on developing novel titanium-titanium diboride (TiB2; ceramic material) composites for dental implants where TiB2 additions were estimated to be 9 wt.%. In a steel mold, Ti-TiB2 composites were fabricated using a powder metallurgy technique and sintered for five hours at 1200 °C. Microstructural and chemical properties were analyzed by energy dispersive X-ray spectroscopy (EDX), scanning electron microscopy (SEM), and X-ra
... Show MoreThe composites were manufactured and study the effect of addition of filler (nanoparticles SiO2 treated with silane) at different weight ratios (1, 2, 3, 4 and 5) %, on electrical, mechanical and thermal properties. Materials were mixed with each other using an ultrasound, and then pour the mixture into the molds to suit all measurements. The electrical characteristics were studied within a range of frequencies (50-1M) Hz at room temperature, where the best results were shown at the fill ratio (1%), and thermal properties at (X=3 %), the mechanical properties at the filler ratio (2%).
In this study, the effect of glass fiber reinforced polymer (GFRP) section and compressive strength of concrete in composite beams under static and low velocity impact loads was examined. Modeling was performed and the obtained results were compared with the test results and their compatibility was evaluated. Experimental tests of four composite beams were carried out, where two of them are control specimen with 20 MPa compressive strength of concrete deck slab and 50 MPa for other. Bending characteristics were affected by the strength of concrete under impact loading case, as it increased maximum impact force and damping time at a ratio of 59% and reduced the damping ratio by 47% compared to the reference hybrid beam. Under stat
... Show MoreIn the present work a theoretical analysis depending on the new higher order . element in shear deformation theory for simply supported cross-ply laminated plate is developed. The new displacement field of the middle surface expanded as a combination of exponential and trigonometric function of thickness coordinate with the transverse displacement taken to be constant through the thickness. The governing equations are derived using Hamilton’s principle and solved using Navier solution method to obtain the deflection and stresses under uniform sinusoidal load. The effect of many design parameters such as number of laminates, aspect ratio and thickness ratio on static behavior of the laminated composite plate has been studied. The
... Show MoreThe main object of this article is to study and introduce a subclass of meromorphic univalent functions with fixed second positive defined by q-differed operator. Coefficient bounds, distortion and Growth theorems, and various are the obtained results.
ABSTRACT Background: Cortical bone thickness is important for the stability of mini implants. Placing mini implants in sites of favorable cortical bone thickness would guarantee better initial stability and long-term success. The aim of this study was to investigate gender, side and jaw differences of the buccal cortical bone thickness as a guide for orthodontic mini screw placement. Materials and Methods: The sample was selected from the patients attending the Specialized Health Center in Al-Sadr City / 3D department. Thirty patients (15 males and 15 females) were selected and cone beam computerized tomographic images were done. Then the buccal cortical bone thickness was measured at thirteen inter radicular sites in the maxilla and mandib
... Show MoreCorrosion Resistance Enhancement for low carbon steel is very important to extend its life service, the coating process is one of the methods which can using to achieve this, and it's the most important in surface treatments to improve the properties of metals and alloys surfaces such as corrosion resistance. In this work, low carbon steel was nitrided and coated with nano zinc using gas phase coating technical, to enhance the resistance of corrosion. The process included adding two layers. The first, a nitride layer, was added by precipitating nitrogen (N) gas, and the second, a zinc (Zn) layer, was added by precipitating Zn. The process of precipitating was carried out at different periods (5, 10, and 15 minutes). Scan electron mi
... Show More