This article presents the results of an experimental investigation of using carbon fiber–reinforced polymer sheets to enhance the behavior of reinforced concrete deep beams with large web openings in shear spans. A set of 18 specimens were fabricated and tested up to a failure to evaluate the structural performance in terms of cracking, deformation, and load-carrying capacity. All tested specimens were with 1500-mm length, 500-mm cross-sectional deep, and 150-mm wide. Parameters that studied were opening size, opening location, and the strengthening factor. Two deep beams were implemented as control specimens without opening and without strengthening. Eight deep beams were fabricated with openings but without strengthening, while the other eight deep beams were with openings in shear spans and with carbon fiber–reinforced polymer sheet strengthening around opening zones. The opening size was adopted to be 200 × 200 mm dimensions in eight deep beams, while it was considered to be 230 × 230 mm dimensions in the other eight specimens. In eight specimens the opening was located at the center of the shear span, while in the other eight beams the opening was attached to the interior edge of the shear span. Carbon fiber–reinforced polymer sheets were installed around openings to compensate for the cutout area of concrete. Results gained from the experimental test showed that the creation of openings in shear spans affect the load-carrying capacity, where the reduction of the failure load for specimens with the opening but without strengthening may attain 66% compared to deep beams without openings. On the other hand, the strengthening by carbon fiber–reinforced polymer sheets for beams with openings increased the failure load by 20%–47% compared with the identical deep beam without strengthening. A significant contribution of carbon fiber–reinforced polymer sheets in restricting the deformability of deep beams was observed.
In this study, the adsorption of Zn (NO3)2 is carried out by using surfaces of malvaparviflora. The validity of the adsorption is evaluated by using atomic absorption Spectrophotometry through determination the amount of adsorbed Zn (NO3)2. Various parameters such as PH, adsorbent weight and contact time are studied in terms of their effect on the reaction progress. Furthermore, Lagergren’s equation is used to determine adsorption kinetics. It is observed that high removal of Zn (NO3)2 is obtained at PH=2. High removal of Zn (NO3)2 is at the time equivalent of 60 min and reaches equilibrium,where 0.25gm is the best weight of adsorbant . For kinetics the reaction onto malvaparviflora follows pseudo first order Lagergren’s equation.
Quantitative analysis of human voice has been subject of interest and the subject gained momentum when human voice was identified as a modality for human authentication and identification. The main organ responsible for production of sound is larynx and the structure of larynx along with its physical properties and modes of vibration determine the nature and quality of sound produced. There has been lot of work from the point of view of fundamental frequency of sound and its characteristics. With the introduction of additional applications of human voice interest grew in other characteristics of sound and possibility of extracting useful features from human voice. We conducted a study using Fast Fourier Transform (FFT) technique to analy
... Show MoreThe natural polyphenolic compound that cinnamon contains is well known for its various biological activities, a broad variety of pharmacological and therapeutic properties. Diversified biomedical and pharmacological applications benefit from organic nanoparticles with controlled properties. Bioactive and non-toxic, cinnamon nanoparticles (CNPs) can be effective antibacterial agents. Driven by this idea, we prepared spherical CNPs using liquid (PLAL) pulse laser ablation technique and defined those NPs. Using Q-switched Nd : YAG With a wavelength of 1064 nm pulse laser of constant energy 500 mj , And different laser pulses ( 250 , 500 , 750 , 1000 ) pulse /sec a pure cinnamon target submerged in
... Show MoreAbstract
In this study, modified organic solvent (organosolv) method was applied to remove high lignin content in the date palm fronds (type Al-Zahdi) which was taken from the Iraqi gardens. In modified organosolv, lignocellulosic material is fractionated into its constituents (lignin, cellulose and hemicellulose). In this process, solvent (organic)-water is brought into contact with the lignocellulosic biomass at high temperature, using stainless steel reactor (digester). Therefor; most of hemicellulose will remove from the biomass, while the solid residue (mainly cellulose) can be used in various industrial fields. Three variables were studied in this process: temperature, ratio of ethano
... Show MoreIn this research, an analysis for the standard Hueckel edge detection algorithm behaviour by using three dimensional representations for the edge goodness criterion is presents after applying it on a real high texture satellite image, where the edge goodness criterion is analysis statistically. The Hueckel edge detection algorithm showed a forward exponential relationship between the execution time with the used disk radius. Hueckel restrictions that mentioned in his papers are adopted in this research. A discussion for the resultant edge shape and malformation is presented, since this is the first practical study of applying Hueckel edge detection algorithm on a real high texture image containing ramp edges (satellite image).
This project introduces a prospective material for photonic laser applications. The material is olive oil which is classified as organic compound, having a good nonlinear optical properties candidate to be used in photonic applications. A high purity sample of olive oil has been used. The theoretical calculation to generate third harmonic wave using olive oil has been determine using MATLAB program. THG (λ=355nm) intensity has been determined at two cases of sample thicknesses 1mm and 10mm. The minimum threshold incident intensity to obtain THG intensity are equal Iω=7530 mW/cm2 at L=1mm and Iω= 6220 mW/cm2 at L=10mm. The possibility of generation of third harmonic in olive oil inside
... Show More