A new colorimetric-flow injection method has been developed and validated for the detection of Cefotaxime sodium in pharmaceutical formulations. This method stands out for its rapid and sensitive nature. The formation of a brown-colored complex between Cefotaxime sodium and the Biuret reagent in a highly alkaline environment serves as the basis for the detection. The intensity of this colored complex is measured using a custom-built Continuous Flow Injection Analyzer, enabling accurate quantification of Cefotaxime sodium. Optimization studies of the chemical and physical parameters such as dilution of Biuret reagent, effect of the medium basicity, flow rate, sample loop and others have been investigated. The calibration graph was linear in the range of 10-650 μg.ml-1 for each blue & green light source, with correlation coefficient r = 0.9509 & 0.9991 for blue & green respectively. The limit of detection was 5 μg.ml-1 for diluting the lowest concentration in the calibration graph. The RSD% was less than 0.7% for 50 and 100 μg.ml-1 (n=6) concentration of Cefotaxime sodium in each light source. Cefotaxime sodium was successfully determined using the proposed approach in two pharmaceutical products. the conventional approach (UV-spectrophotometry at wavelength 388 nm) and the newly devised method analyses were compared using the conventional add approach and the t-test at a 95% confidence level revealed that there was no discernible difference between the two procedures.
New, easy, simple, and fast spectral method for estimation of sulfamethoxazole (SMZ) in pure and pharmaceutical forms. The proposed method is based on the azotization of the drug compound by sodium nitrite in an acidic medium and then coupling with 2,3dimethyl phenol reagent (DMP) in a basic medium to yield an orange-coloured dye which shows λmax at 402 nm. Different affection of the optimization reaction has been completed, following the classical univariate sequence. The concentration of sulfamethoxazole about (1-15) μg. mL-1 with molar absorptivity of (14943.461) L.mol1 .cm-1 that obeyed Beer’s law. The detection and quantification limits were (0.852, 2.583) μg. mL-1 respectively, while the value of Sandell’s sensitivity (
... Show MoreA simple, low cost and rapid flow injection turbidimetric method was developed and validated for mebeverine hydrochloride (MBH) determination in pharmaceutical preparations. The developed method is based on forming of a white, turbid ion-pair product as a result of a reaction between the MBH and sodium persulfate in a closed flow injection system where the sodium persulfate is used as precipitation reagent. The turbidity of the formed complex was measured at the detection angle of 180° (attenuated detection) using NAG dual&Solo (0-180°) detector which contained dual detections zones (i.e., measuring cells 1 & 2). The increase in the turbidity of the complex was directly proportional to the increase of the MBH concentration
... Show MoreA simple, low cost and rapid flow injection turbidimetric method was developed and validated for mebeverine hydrochloride (MBH) determination in pharmaceutical preparations. The developed method is based on forming of a white, turbid ion-pair product as a result of a reaction between the MBH and sodium persulfate in a closed flow injection system where the sodium persulfate is used as precipitation reagent. The turbidity of the formed complex was measured at the detection angle of 180° (attenuated detection) using NAG dual&Solo (0-180°) detector which contained dual detections zones (i.e., measuring cells 1 & 2). The increase in the turbidity of the complex was directly proportional to the increase of the MBH concentration
... Show MoreA chemometric method, partial least squares regression (PLS) was applied for the simultaneous determination of piroxicam (PIR), naproxen (NAP), diclofenac sodium (DIC), and mefenamic acid (MEF) in synthetic mixtures and commercial formulations. The proposed method is based on the use of spectrophotometric data coupled with PLS multivariate calibration. The Spectra of drugs were recorded at concentrations in the linear range of 1.0 - 10 μg mL-1 for NAP and from 1.0 - 20 μg mL-1 for PIR, DIC, and MEF. 34 sets of mixtures were used for calibration and 10 sets of mixtures were used for validation in the wavelength range of 200 to 400 nm with the wavelength interval λ = 1 nm in methanol. This method has been used successfully to quant
... Show MoreA simple, sensitive and accurate spectrophotometric method has been developed for the determination of salbutamol sulphate (SAB) and isoxsuprine hydrochloride (ISX) in pure and pharmaceutical dosage. The method involved oxidation of (SAB) and (ISX) with a known excess of N-bromosuccinamid in acidic medium, and subsequent occupation of unreacted oxidant in decolorization of Evans blue dye (EB). This, in the presence of SAB or ISX was rectilinear over the ranges 1.0-12.0, 1.0-11.0 µg/mL, with molar absorptivity 4.21×104 and 2.58×104 l.mol-1.cm-1 respectively. The developed method had been successfully applied for the determination of the studied drugs in their pharmaceutical dosage resulting i
... Show MoreAn Indirect simple sensitive and applicable spectrofluorometric method has been developed for the determination of Cefotaxime Sodium (CEF), ciprofloxacin Hydrochloride (CIP) and Famotidine (FAM) using reaction system bromate-bromide and acriflavine (AF) as fluorescent dye. The method is based on the oxidation of drugs with known excess bromate-bromide mixture in acidic medium and subsequent determination of unreacted oxidant by quenching fluorescence of AF. Fluorescence intensity of residual AF was measured at 528 nm after excitation at 402 nm. The fluorescence-concentration plots were rectilinear over the ranges 0.1-3.0, 0.05-2.6 and 0.1-3.8 µg ml-1 with lower detection limits of 0.013, 0.018 and 0.021 µg ml-1 an
... Show MoreA direct, sensitive and efficient spectrophotometric method for the determination of nitrofurantoin
drug (NIT) in pure as well as in dosage form (capsules) was described. The suggested method was
based on reduction NIT drug using Zn/HCl and then coupling with 3-methyl-2-benzothiazolinone
hydrazone hydrochloride (MBTH) in the presence of ammonium ceric sulfate. Spectrophotometric
measurement was established by recording the absorbance of the green colored product at 610 nm.
Using the optimized reaction conditions, beer’s law was obeyed in the range of 0.5-30 μg/mL, with
good correlation coefficient of 0.9998 and limits of detection and quantitation of 0.163 and 0.544
μg/mL, respectively. The accuracy and
The present study describes employing zero-, 1st - and 2nd -order derivative spectrophotometric methods have been developed for determination of lorazepam (LORA) and clonazepam (CLON) in commercially available tablets. LORA was determined by means of 1st (D1), 2nd (D2) derivative spectrophotometric techniques using zero cross, peak height, and Peak area. D1 used for the determination of CLON by using zero cross and peak height while D2 (zero cross) was used for the determination of CLON. The method was established to be linear in concentration containing different ratios of LORA and CLON range of (20-200 mg/L) and (5-35 mg/L) at wavelength range (250 -370 nm), (210-370nm) respectively. The proposed techniques are highly sensitive, precise a
... Show More