BACKGROUND: Chronic prostatitis/chronic pelvic pain syndrome (CP/CPPS) is common, yet no curative treatment identified. Cinnamon is a herbal substance, which has many applications in medicine. AIM: The aim of the study was to study the effect of cinnamon on patients with chronic pelvic pain syndrome. METHODS: Sixty patients with documented CP/CPPS randomized into two groups during 2018 and 2019 in Baghdad. The first group received 60 capsules each contained 1 g of cinnamon. The other group received 60 capsules each contained 1 g of sugar powder (placebo). All the patients instructed to take one capsule twice daily for 1 month. National Institutes of Health-Chronic Prostatitis Symptom Index (NIH-CPSI) was reported for both groups at baseline and after 1 month of treatment. The primary outcome was a patient perceivable improvement defined as a reduction of the NIH-CPSI by 6 or more points after 1 month, whereas improvement of sub-scores of NIH-CPSI (pain, urinary symptoms, and quality of life) considered as a secondary outcome, and adverse reactions reported. RESULTS: Thirteen patients (43.3%) of the cinnamon group have 6 or more points of reduction in the total NIH-CPSI compared to four patients (13.3%) of the control groups (p = 0.01). The improvement in total NIH-CPSI score was mainly due to improvement in pain sub-score, whereas in urinary symptoms, there was marginal change with no significant change in the quality of life score. The only reported side effect was gastric upset in one patient. CONCLUSION: The study concluded that cinnamon improves NIH-CPSI in patients with CP/CPPS. REGISTRATION: The study was registered on ClinicalTrials.gov with the ID: NCT03946163.
Abstract Organic compounds with pyrazole cores have a variety of uses, notably in the pharmaceutical and agrochemical sectors. The interest in creating pyrazole compounds, examining their many features, and looking for potential uses is growing. Our work has concert with synthesis of chalcones and pyrazolines, then finally pyrazoline-aniline derivatives and evaluation their anti-inflammatory, antibacterial and antifungal activities
To evaluate the bioactivity and the cytocompatibility of experimental Bioglass-reinforced polyethylene-based root-canal filling materials. The thermal properties of the experimental materials were also evaluated using differential scanning calorimetry, while their radiopacity was assessed using a grey-scale value (GSV) aluminium step wedge and a phosphor plate digital system. Bioglass 45S5 (BAG), polyethylene and Strontium oxide (SrO) were used to create tailored composite fibres. The filler distribution within the composites was assessed using SEM, while their bioactivity was evaluated through infrared spectroscopy (FTIR) after storage in simulated body fluid (SBF). The radiopacity of the composite fibres and their thermal properties were
... Show MoreThis work describes the enhancement of phenol red decolorization through immobilizing of laccase in chitosan and enzyme recycling. Commercial laccase from white rot fungus, Trametesversicolor (Tvlac), was immobilizedin to freshly prepared chitosan beads by using glutaraldehyde as a cross linker. Characterization of prepared chitosan was confirmed by FTIR and scanning electron microscope (SEM). Tvlac (46.2 U/mL) immobilized into chitosan beads at 0.8 % glutaraldehyde (v/v) within 24 hrs. Synthetic (HBT) and natural (vanillin) mediators were used to enhance dye decolorizoation. It was found that 89 % of phenol red was decolorized by chitosan beads within 180 min. in the absence of enzyme and mediator, while decolorization percenta
... Show MoreIn this research, annealed nanostructured ZnO catalyst water putrefaction system was built using sun light and different wavelength lasers as stimulating light sources to enhance photocatalytic degradation activity of methylene blue (MB) dye as a model based on interfacial charges transfer. The structural, crystallite size, morphological, particle size, optical properties and degradation ability of annealed nanostructured ZnO were characterized by X-Ray Diffraction (XRD), Atomic Force Microscopy (AFM) and UV-VIS Spectrometer, respectively. XRD results demonstrated a pure crystalline hexagonal wurtzite with crystalline size equal to 23 nm. From AFM results, the average particle size was 79.25nm. All MB samples and MB with annealed nanostr
... Show MoreBackground: In December 2019, an episode of COVID-19 caused by severe acute respiratory syndrome coronavirus 2 (SARSCoV2) was reported in Wuhan, China and has spread around the world, increasing the number of contagions. Cytomegalovirus (CMV) and Epstein-Barr virus (EBV) are common herpesviruses that can cause persistent latent infections and affect the developing immune system.The study was conducted to explore the prevalence and reactivation of CMV and EBV antibodies in COVID-19 patients group in comparison to healthy group and to investigate the association between the presence of these viruses with each of severity of disease and oral hygiene. Materials and Methods: Eighty Five subjects were participated in this case control study (5
... Show MoreRemoval of heavy metals from waste water has received a great deal of attention. The compare Cr
(VI) adsorption characteristics removing from wastewater by using thermally modified and non-modified
eggshells were examined
The present study deals with the synthesis of four different azo-azomethine derivatives; this is done by two steps; the first step is diazotization of sulfonamides (sulfanilamide, sulfacetamide, sulfamethoxazole, and sulfadiazine) separately, followed by the second step; the coupling reaction of diazotized compounds with isatin bis-Schiff base named 3-((4-nitrobenzylidene) hydrazono)indolin-2-one. The later one (bis-Schiff base) was synthesized by the reaction of 3-hydrazono-indolin-2-one with p-nitrobenzaldehyde. The chemical structures of newly synthesized compounds were approved on the basis of their FTIR, 1H-NMR, and CHNS elemental analysis data results. The synthesized azo compounds were tested in vitro for their antimicrobial potentia
... Show More