Preferred Language
Articles
/
YBfnApABVTCNdQwCfIKZ
The Linear Delay Fourth Order Eigen-Value Problems Solved By the Collocation Method
...Show More Authors

Publication Date
Tue Jan 01 2019
Journal Name
Science International.(lahore)
GALERKIN'S METHOD TO SOLVE THE LINEAR SECOND ORDER DELAY MULTI-VALUE PROBLEMS
...Show More Authors

Publication Date
Sun Mar 06 2011
Journal Name
Baghdad Science Journal
The Approximated Solution for The Nonlinear Second Order Delay Multi-Value Problems
...Show More Authors

This paper is attempt to study the nonlinear second order delay multi-value problems. We want to say that the properties of such kind of problems are the same as the properties of those with out delay just more technically involved. Our results discuss several known properties, introduce some notations and definitions. We also give an approximate solution to the coined problems using the Galerkin's method.

View Publication Preview PDF
Crossref
Publication Date
Tue Oct 20 2020
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Solving Nonlinear Second Order Delay Eigenvalue Problems by Least Square Method
...Show More Authors

     The aim of this paper is to study the nonlinear delay second order eigenvalue problems which consists of delay ordinary differential equations, in fact one of the expansion methods that is called the least square method which will be developed to solve this kind of problems.

View Publication Preview PDF
Crossref
Publication Date
Fri Mar 01 2019
Journal Name
Far East Journal Of Mathematical Sciences (fjms)
SOME TYPES OF DELAY DIFFERENTIAL EQUATIONS SOLVED BY SUMUDU TRANSFORM METHOD
...Show More Authors

View Publication
Crossref
Publication Date
Tue Sep 08 2020
Journal Name
Baghdad Science Journal
A Proposed Analytical Method for Solving Fuzzy Linear Initial Value Problems
...Show More Authors

     In this article, we aim to define a universal set consisting of the subscripts of the fuzzy differential equation (5) except the two elements  and , subsets of that universal set are defined according to certain conditions. Then, we use the constructed universal set with its subsets for suggesting an analytical method which facilitates solving fuzzy initial value problems of any order by using the strongly generalized H-differentiability. Also, valid sets with graphs for solutions of fuzzy initial value problems of higher orders are found.

View Publication Preview PDF
Scopus (1)
Crossref (1)
Scopus Clarivate Crossref
Publication Date
Sun Sep 04 2011
Journal Name
Baghdad Science Journal
Approximate Solution of Delay Differential Equations Using the Collocation Method Based on Bernstien Polynomials???? ???????? ????????? ????????? ????????? ???????? ?????????? ???????? ??? ??????? ???? ?????????
...Show More Authors

In this paper a modified approach have been used to find the approximate solution of ordinary delay differential equations with constant delay using the collocation method based on Bernstien polynomials.

View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Mon Aug 01 2022
Journal Name
Baghdad Science Journal
Accurate Four-Step Hybrid Block Method for Solving Higher-Order Initial Value Problems
...Show More Authors

This paper focuses on developing a self-starting numerical approach that can be used for direct integration of higher-order initial value problems of Ordinary Differential Equations. The method is derived from power series approximation with the resulting equations discretized at the selected grid and off-grid points. The method is applied in a block-by-block approach as a numerical integrator of higher-order initial value problems. The basic properties of the block method are investigated to authenticate its performance and then implemented with some tested experiments to validate the accuracy and convergence of the method.

View Publication Preview PDF
Scopus Clarivate Crossref
Publication Date
Sun Nov 01 2020
Journal Name
International Journal Of Nonlinear Analysis And Applications
Two Efficient Methods For Solving Non-linear Fourth-Order PDEs
...Show More Authors

This paper studies a novel technique based on the use of two effective methods like modified Laplace- variational method (MLVIM) and a new Variational method (MVIM)to solve PDEs with variable coefficients. The current modification for the (MLVIM) is based on coupling of the Variational method (VIM) and Laplace- method (LT). In our proposal there is no need to calculate Lagrange multiplier. We applied Laplace method to the problem .Furthermore, the nonlinear terms for this problem is solved using homotopy method (HPM). Some examples are taken to compare results between two methods and to verify the reliability of our present methods.

Scopus (9)
Scopus
Publication Date
Wed Aug 31 2022
Journal Name
Iraqi Journal Of Science
Solving Nonlinear Boundary Value Problem Arising of Natural Convection Porous Fin By Using the Haar Wavelet Collocation Method and Temimi and Ansari Method
...Show More Authors

      In this article, the boundary value problem of convection propagation through the permeable fin in a natural convection environment is solved by the Haar wavelet collocation method (HWCM). We also compare the solutions with the application of a semi-analytical method , namely the Temimi and Ansari (TAM), that is characterized by accuracy and efficiency.The proposed method is also characterized by simplicity and efficiency. The possibility of applying the proposed method to many types of  linear or nonlinear ordinary and partial differential equations.

View Publication Preview PDF
Scopus (1)
Scopus Crossref
Publication Date
Thu Apr 13 2017
Journal Name
Ibn Al-haitham Journal For Pure And Applied Sciences
Solution of 2nd Order Nonlinear Three-Point Boundary Value Problems By Semi-Analytic Technique
...Show More Authors

    In this paper, we present new algorithm for the solution of the second order nonlinear three-point boundary value problem with suitable multi boundary conditions. The algorithm is based on the semi-analytic technique and the solutions which are calculated in the form of a rapid convergent series. It is observed that the method gives more realistic series solution that converges very rapidly in physical problems. Illustrative examples are provided to demonstrate the efficiency and simplicity of the proposed method in solving this type of three point boundary value problems.

View Publication Preview PDF