The flexible joint robot manipulators provide various benefits, but also present many control challenges such as nonlinearities, strong coupling, vibration, etc. This paper proposes optimal second order integral sliding mode control (OSOISMC) for a single link flexible joint manipulator to achieve robust and smooth performance. Firstly, the integral sliding mode control is designed, which consists of a linear quadratic regulator (LQR) as a nominal control, and switching control. This control guarantees the system robustness for the entire process. Then, a nonsingularterminal sliding surface is added to give a second order integral sliding mode control (SOISMC), which reduces chartering effect and gives the finite time convergence as well. Simulation results show superiority of the proposed algorithm over LQR and ISMC in terms of tracking performance and chattering mitigation.
In this research, dynamical study of an SIR epidemical model with nonlinear direct incidence rate (Beddington-De Angelis ) type, and regress of treatment investigated .An analytical study to the model shows that there are two equilibrium points appear, the discussed successfully with sufficient condition, the existence of local bifurcation and Hopf bifurcation was analyzed, finally numerical simulations are done to explain the analytic studies.
Electromechanical actuators are used in a wide variety of aerospace applications such as missiles, aircrafts and spy-fly etc. In this work a linear and nonlinear fin actuator mathematical model has been developed and its response is investigated by developing an algorithm for the system using MATLAB. The algorithm used to the linear model is the state space algorithm while the algorithm used to the nonlinear model is the discrete algorithm. The huge moment constant is varied from (-3000 to 3000) and the damping ratio is varied from (0.4 to 0.8).
The comparison between linear and nonlinear fin actuator response results shows that for linear model, the maximum overshoot is about 10%,
... Show MoreThis paper investigates the recovery for time-dependent coefficient and free boundary for heat equation. They are considered under mass/energy specification and Stefan conditions. The main issue with this problem is that the solution is unstable and sensitive to small contamination of noise in the input data. The Crank-Nicolson finite difference method (FDM) is utilized to solve the direct problem, whilst the inverse problem is viewed as a nonlinear optimization problem. The latter problem is solved numerically using the routine optimization toolbox lsqnonlin from MATLAB. Consequently, the Tikhonov regularization method is used in order to gain stable solutions. The results were compared with their exact solution and tested via
... Show MoreThis paper proposes feedback linearization control (FBLC) based on function approximation technique (FAT) to regulate the vibrational motion of a smart thin plate considering the effect of axial stretching. The FBLC includes designing a nonlinear control law for the stabilization of the target dynamic system while the closed-loop dynamics are linear with ensured stability. The objective of the FAT is to estimate the cubic nonlinear restoring force vector using the linear parameterization of weighting and orthogonal basis function matrices. Orthogonal Chebyshev polynomials are used as strong approximators for adaptive schemes. The proposed control architecture is applied to a thin plate with a large deflection that stimulates the axial loadi
... Show MorePulsatile drug delivery systems (PDDS) are developed to deliver drug according to circadian behavior of diseases. They deliver the drug at the right time, action and in the right amount, which provides more benefit than conventional dosages and increased patient compliance. The drug is released rapidly and completely as a pulse after a lag time. These systems are beneficial for drugs with chrono-pharmacological behavior, where nighttime dosing is required and for the drugs having a high first-pass effect and having specific site of absorption in the gastrointestinal tract. This article covers methods and marketed technologies that have been developed to achieve pulsatile delivery. Diseases wherein PDDS are promising include asthma, peptic u
... Show MoreThe main aim of this research is to present and to study several basic characteristics of the idea of FI-extending semimodules. The semimodule is said to be an FI-extending semimodule if each fully invariant subsemimodule of is essential in direct summand of . The behavior of the FI-extending semimodule with respect to direct summands as well as the direct sum is considered. In addition, the relationship between the singularity and FI-extending semimodule has been studied and investigated. Finally extending propertywhich is stronger than FI extending, that has some results related to FI-extending and singularity is also investigated.
Through research it shows that the calculation has an effective role in the maintenance of Islamic law and save. And that the calculation religious function to attach religious matters and it closeness to God, whether calculated or assumed carried out by volunteers. And scientists from the description of the calculation as a social function to attach to morality and kinship and charity to the poor and the dissemination of science. By definition it shows that the injury will not be exposed only to the evils of any phenomenon that do not break and was checking to search for evil, but he must intervene if he saw visible in front of him. And that of the areas that could see the calculation are the field of information and educ
... Show MoreThis work is devoted to define new generalized gamma and beta functions involving the recently suggested seven-parameter Mittag-Leffler function, followed by a review of all related special cases. In addition, necessary investigations are affirmed for the new generalized beta function, including, Mellin transform, differential formulas, integral representations, and essential summation relations. Furthermore, crucial statistical application has been realized for the new generalized beta function.
In this article, we define and study a family of modified Baskakov type operators based on a parameter . This family is a generalization of the classical Baskakov sequence. First, we prove that it converges to the function being approximated. Then, we find a Voronovsky-type formula and obtain that the order of approximation of this family is . This order is better than the order of the classical Baskakov sequence whenever . Finally, we apply our sequence to approximate two test functions and analyze the numerical results obtained.