A new metal complexes are made from the ligands derived from amoxicillin based Schiff's base coordinated with Pd(II) and Co(II) have been synthesized and characterized via different spectroscopic methods. FT-IR spectroscopy have shown a formation of tetrahedral and square planar geometry for Co(II) and Pd(II) complexes, respectively. Surface morphology was inspected via field emission scanning electron microscopy (FESEM) and atomic force microscopy (AFM). The Brunauer–Emmett–Teller surface area of the metal complexes samples is about 6.63 to 8.71 m2/g, with pore diameters and volume of 0.030–0.0501 cm3/g and 18.39–22.98 nm, respectively. The quadrupole moment of CO2 has a great effect on the adsorption capacity as it is highly diffusible of 21.38, 26.16 cm3.g−1 for Co(II) and Pd(II) complex.
Acetophenone sulfamethoxazole and 3-Nitrobenzophenone sulfamethoxazole were prepared from the reaction of sulfamethoxazole with two ketones. The prepared ligands were identified by (C.H.N) analysis and UV-VIS, FT-IR spectroscopic techniques. Metal complexes of the two ligands were prepared in an aqueous alcohol with Zn (II), Mn (II) and Cu (II) ions with a molar ratio1:1. The proposed general formula for the resulting complexes was [ML.CL2.H2O]H2O .The complexes were characterized by (C.H.N) technique , spectroscopic methods ,conductivity, atomic absorption ,magnetic susceptibility measurements and melting point. According to the results obtained, the suggested geometry is to be octahedral for all the complexes.
Transition metal complexes of Co(II) and Ni(II) with azo dye 3,5-dimethyl-2-(4-nitrophenylazo)-phenol derived from 4-nitoaniline and3,5-dimethylphenol were synthesized. Characterization of these compounds has been done on the basis of elemental analysis,electronic data, FT-IR,UV-Vis and 1 HNMR, as well as magnetic susceptibility and conductivity measurements. The nature of thecomplexes formed were studies following the mole ratio and continuous variation methods, Beer ' s law obeyed over a concentrationrange (1x10 -4 - 3x10 -4 M). High molar absorbtivity of the complex solutions were observed. From the analytical data, thestoichiomerty of the complexes has been found to be 1:2 (Metal:ligand). On the basis of physicochemical data tetrahedral
... Show MoreThis work is based on the synthesis of Cobalt(II) and Cadmium(II) mixed-ligands compounds obtained from the reaction of N'-(4-methylsulfanyl-benzoyl)-hydrazine carbodithioic acid methyl ester as a ligand and using ethylendiamine (en), 2,2'-bipyridine (bipy) or 1,10-phenanthroline (phen) as a co-ligand. The synthesis of ligand (HL) was based on multi-steps synthetic procedure. The reaction of 4-methylsulfanyl-benzoyl chloride with hydrazine gave 4-methylsulfanyl-benzoic acid hydrazide. This compound was reacted with carbon disulfide and potassium hydroxide in methanol to yield N'-(4-methylsulfanylbenzoyl)-hydrazine potassium thiocarbamate, which upon reaction with methyl iodide resulted in the formation of the ligand. A range of physico-chem
... Show MoreThis work is based on the synthesis of Cobalt(II) and Cadmium(II) mixed-ligands compounds obtained from the reaction of N'-(4-methylsulfanyl-benzoyl)-hydrazine carbodithioic acid methyl ester as a ligand and using ethylendiamine (en), 2,2'-bipyridine (bipy) or 1,10-phenanthroline (phen) as a co-ligand. The synthesis of ligand (HL) was based on multi-steps synthetic procedure. The reaction of 4-methylsulfanyl-benzoyl chloride with hydrazine gave 4-methylsulfanyl-benzoic acid hydrazide. This compound was reacted with carbon disulfide and potassium hydroxide in methanol to yield N'-(4-methylsulfanylbenzoyl)-hydrazine potassium thiocarbamate, which upon reaction with methyl iodide resulted in the formation of the ligand. A range of physico-c
... Show MoreThis article reviews the technical applicability of nanofiltration membrane process for the removal of nickel, lead, and copper ions from industrial wastewater.
Synthetic industrial wastewater samples containing Ni(II), Pb(II), and Cu(II) ions at various concentrations (50, 100, 150 and 200 ppm), under different pressures (1, 2, 3 and 4 bar), temperatures (10, 20, 30 and 40 oC), pH (2, 3, 4, 5 and 5.5), and flow rates (1, 2, 3 and 4 L/hr), were prepared and subjected treated by NF systems in the laboratory. Suitable NF membrane was chosen after testing a number of NF membranes (University of Technology-Baghdad), in terms of production and removal. NF system was capable of removing more than (85%, 78%, and 66% for Ni(II
... Show MoreOverall enthalpy and entropy of complex formation were calculated from stability constant measurements at different tempreture also experimental results
حضرت معقدات كل من الفنادايل, الخارصين, النحاس والكادميوم بتكافؤهم الثنائي والذهب بتكافؤه الثلاثي بأستخدام صبغة ازوجديدة (6،4،2-ثلاثي هيدروكسي-3-((3-هيدروكسي فنيل) ثنائي زينيل ) فنيل ) ايثان-1-اون المحضرة من ملح الديازونيوم مع ٦,٤,٢- ثلاثي هيدروكسي اسيتوفينون بعد عزل (E)-1-(2,4,6-trihydroxy-3-((3-hydroxyphenyl)diazenyl)phenyl)ethan-1-one تم تشخيصها بواسطة الطرق الطيفية المتاحة والتقنيات التشخيصية لكل من التحليل الدقيق للعناصرواطياف كل من ال
... Show MoreReaction of L1 [((E)-N1-(nitrobenzylidene)benzene-1,2-diamine] and L2( m-aminophenol), and one equivalent of di- or tri-valent metals(Cr(ӀӀӀ), Mn(ӀӀ), Fe(ӀӀӀ), Co(ӀӀ), Ni(ӀӀ), Cu(ӀӀ) and Zn(ӀӀ) afforded the complexes [M(L1)(L2)2]Cl, M=Cr(ӀӀӀ) and Fe(ӀӀӀ) and the complexes [M(L1)(L2)2] M= Mn(ӀӀ), Co(ӀӀ), Ni(ӀӀ), Cu(ӀӀ) and Zn(ӀӀ). The structure of the Schiff base ligand and their complexes are characterized by (C:H:N), FT.IR, UV.Vis, 1HNMR, 13CNMR and mass spectral. The presence of metal in the complexes are characterized by flame atomic absorption. The spectral data of the complexes have revealed the octahedral geometry. The (L1), (L2) and mixed ligand metal complexes were screened for their ability as cataly
... Show More