Preferred Language
Articles
/
YBdfjY0BVTCNdQwCkBaz
Mitigating Reflection Cracking in Asphalt Concrete Overlays with ECC and Geotextile
...Show More Authors

The rehabilitation of deteriorated pavements using Asphalt Concrete (AC) overlays consistently confronts the reflection cracking challenge, where inherent cracks and joints from an existing pavement layer are mirrored in the new overlay. To address this issue, the current study evaluates the effectiveness of Engineered Cementitious Composite (ECC) and geotextile fabric as mitigation strategies. ECC, characterized by its tensile ductility, fracture resistance, and high deformation capacity, was examined in interlayer thicknesses of 7, 12, and 17 mm. Additionally, the impact of geotextile fabric positioning at the base and at 1/3 depth of the AC specimen was explored. Utilizing the Overlay Testing Machine (OTM) for evaluations, the research demonstrated that ECC17 significantly mitigated reflection cracking, showing a notable 764% increase in the number of load cycles to failure (Nf) compared to the Geotextile Base (GB) specimen. Against the Reference Specimen (RS), ECC17 exhibited a remarkable 1307% enhancement in Nf values, underscoring its effectiveness. Geotextile fabric, particularly at 1/3 depth, demonstrated notable resistance but was overshadowed by the performance of ECC interlayers. The results clearly indicate that ECC, especially ECC17, stands out as an effective solution for mitigating reflection cracking, including joints, in AC overlays.

View Publication Preview PDF
Quick Preview PDF
Publication Date
Mon Aug 01 2011
Journal Name
Journal Of Engineering
EFFECT OF STEEL FIBERS ADDITION ON THE BEHAVIOR OF HIGH STRENGTH CONCRETE CIRCULAR SHORT COLUMNS
...Show More Authors

loaded reinforced concrete circular short columns. An experimental investigation into the behavior
of 24 short reinforced concrete columns with and without steel fibers was carried out. The columns
had a circular section (200 mm diameter and 900 mm long). Test variables include concrete
strength, spacing of spiral reinforcement, and inclusion of steel fibers. The axial stress and axial
strains were obtained and used to evaluate the effects of the presence of steel fibers. It was found
that the addition of steel fibers slightly improves the load carrying capacity of the tested columns
whereas it significantly enhances the ductility of these specimens. Test results also indicated that for
the same confinement parameter

... Show More
View Publication Preview PDF
Crossref (1)
Crossref
Publication Date
Thu Mar 02 2023
Journal Name
East European Journal Of Physics
Investigation of the Impact of Glass Waste in Reactive Powder Concrete on Attenuation Properties for Bremsstrahlung Ray
...Show More Authors

Reactive Powder Concrete (RPC) is one of the most advanced recent high compressive strength concrete. This work explored the effects of using glass waste as a fractional replacement for fine aggregate in reactive powder concrete at levels of 0%, 25%, 50%, and 100%. Linear and mass attenuation coefficients have been calculated as a function of the sample's thickness and bremsstrahlung energy. These coefficients were obtained using energy selective scintillation response to bremsstrahlung having an energy ranging from (0.1-1.1) MeV. In addition, the half-value thickness of the samples prepared has been investigated. It was found that there is a reversal association between the attenuation coefficient and the energy of the bremsstrahlu

... Show More
View Publication
Scopus (2)
Crossref (1)
Scopus Clarivate Crossref
Publication Date
Tue Sep 12 2017
Journal Name
Nucl Sci Tech
Investigating the influence of gamma ray energies and steel fiber on attenuation properties of reactive powder concrete
...Show More Authors

Scopus (12)
Crossref (12)
Scopus Clarivate Crossref
Publication Date
Tue Sep 12 2017
Journal Name
Nuclear Science And Techniques
Investigating the influence of gamma ray energies and steel fiber on attenuation properties of reactive powder concrete
...Show More Authors

View Publication
Crossref (12)
Crossref
Publication Date
Thu Nov 02 2023
Journal Name
Journal Of Engineering
Verification and Parametric Analysis of Shear Behavior of Reinforced Concrete Beams using Non-linear Finite Element Analysis
...Show More Authors

Many researchers have tackled the shear behavior of Reinforced Concrete (RC) beams by using different kinds of strengthening in the shear regions and steel fibers. In the current paper, the effect of multiple parameters, such as using one percentage of Steel Fibers (SF) with and without stirrups, without stirrups and steel fibers, on the shear behavior of RC beams, has been studied and compared by using Finite Element analysis (FE). Three-dimensional (3D) models of (RC) beams are developed and analyzed using ABAQUS commercial software. The models were validated by comparing their results with the experimental test. The total number of beams that were modeled for validation purposes was four. Extensive pa

... Show More
View Publication Preview PDF
Crossref
Publication Date
Sat Jan 01 2022
Journal Name
Geotechnical Engineering And Sustainable Construction
Dynamic Response of Slender Reinforced Concrete Columns Strengthened by Using CFRP and Circularization Subjected to Seismic Excitation
...Show More Authors

View Publication
Crossref
Publication Date
Fri Oct 13 2023
Journal Name
Engineering, Technology & Applied Science Research
The Experimental and Theoretical Effect of Fire on the Structural Behavior of Laced Reinforced Concrete Deep Beams
...Show More Authors

A Laced Reinforced Concrete (LRC) structural element comprises continuously inclined shear reinforcement in the form of lacing that connects the longitudinal reinforcements on both faces of the structural element. This study conducted a theoretical investigation of LRC deep beams to predict their behavior after exposure to fire and high temperatures. Four simply supported reinforced concrete beams of 1500 mm, 200 mm, and 240 mm length, width, and depth, respectively, were considered. The specimens were identical in terms of compressive strength (  40 MPa) and steel reinforcement details. The same laced steel reinforcement ratio of 0.0035 was used. Three specimens were burned at variable durations and steady-state temperatures (one

... Show More
View Publication
Scopus (2)
Crossref (2)
Scopus Clarivate Crossref
Publication Date
Sat Dec 11 2021
Journal Name
Engineering, Technology & Applied Science Research
Experimental and Numerical Analysis of the Punching Shear Resistance Strengthening of Concrete Flat Plates by Steel Collars
...Show More Authors

In this study, six square reinforced concrete flat plates with dimensions of (1500×1500×100) mm were tested under a concentrated load applied on a column located at the center of the slabs. One of these slabs was the control specimen, whereas, in the others, steel angles (steel collars) were used, fixed at the connection region between the slab and the column to investigate the effect of the presence of these collars on punching shear strength. Five thicknesses were used (4, 5, 6, 8, 10mm) with constant legs of angles (75×75) mm of the steel collars to investigate the effects on the punching shear resistance with respect to the control slab. The results of the experimental study show that the punching shear resistance increased b

... Show More
Scopus (7)
Crossref (4)
Scopus Crossref
Publication Date
Fri Jul 01 2022
Journal Name
Civil Engineering Journal
Behavior of Post-Tensioned Concrete Girders Subject to Partially Strand Damage and Strengthened by NSM-CFRP Composites
...Show More Authors

Studies on the flexural behavior of post-tensioned beams subjected to strand damage and strengthened with near-surface mounted (NSM) technique using carbon fiber-reinforced polymer (CFRP) are limited and fail to examine the effect of CFRP laminates on strand strain and strengthening efficiency systematically. Furthermore, a design approach for UPC structures in existing design guidelines for FRP strengthening techniques is lacking. Hence, the behavior of post-tensioned beams strengthened with NSM-CFRP laminates after partial strand damage is investigated in this study. The testing program consists of seven post-tensioned beams strengthened by NSM-CFRP laminates with three partial strand damage ratios (14.3% symmetrical damage, 14.3%

... Show More
Scopus (8)
Crossref (5)
Scopus Clarivate Crossref
Publication Date
Sat Aug 01 2020
Journal Name
Key Engineering Materials
Irradiation Duration Effect of Gamma Ray on the Compressive Strength of Reactive Powder Concrete
...Show More Authors

Reactive Powder Concrete (RPC) could be considered as the furthermost significant modern high compressive strength concrete. In this study, an experimental investigation on the impact of micro steel fiber volume fraction ratio and gamma ray irradiation duration influence upon the compressive strength of RPC is presented. Three volume fraction ratios (0.0, 1.0 and 1.5) % was implemented. For each percentage of the adopted fiber ratios, six different irradiation duration was considered; these are (1, 2, 3, 4, 5 and 6) days. Gamma source (Cs-137) of energy (0.662) MeV and activity (6) mci was used. In a case of zero volume fraction ratio, the experimental results showed that gamma ray had a significant influence on the reducing of the

... Show More
Scopus (1)
Crossref (2)
Scopus Crossref