The rehabilitation of deteriorated pavements using Asphalt Concrete (AC) overlays consistently confronts the reflection cracking challenge, where inherent cracks and joints from an existing pavement layer are mirrored in the new overlay. To address this issue, the current study evaluates the effectiveness of Engineered Cementitious Composite (ECC) and geotextile fabric as mitigation strategies. ECC, characterized by its tensile ductility, fracture resistance, and high deformation capacity, was examined in interlayer thicknesses of 7, 12, and 17 mm. Additionally, the impact of geotextile fabric positioning at the base and at 1/3 depth of the AC specimen was explored. Utilizing the Overlay Testing Machine (OTM) for evaluations, the research demonstrated that ECC17 significantly mitigated reflection cracking, showing a notable 764% increase in the number of load cycles to failure (Nf) compared to the Geotextile Base (GB) specimen. Against the Reference Specimen (RS), ECC17 exhibited a remarkable 1307% enhancement in Nf values, underscoring its effectiveness. Geotextile fabric, particularly at 1/3 depth, demonstrated notable resistance but was overshadowed by the performance of ECC interlayers. The results clearly indicate that ECC, especially ECC17, stands out as an effective solution for mitigating reflection cracking, including joints, in AC overlays.
This study focuses on the behavior of simply supported perforated prestressed concrete rafters (PPCRs) under single midspan monotonic static loading. The experimental program consisted of testing seven specimens; one solid (control) rafter, and six perforated with quadrilateral openings. The main investigated variables are the number and height of the openings. The test findings indicate that, in comparison to the solid rafter, the presence of quadrilateral openings in the PPCRs led to reducing the load capacity by (4.3-36%) and increase the midspan deflection at ultimate by (14.8-33%). Also, increasing the number of concrete posts between openings resulted in increasing the failure load and decreasing the deflection at all stages o
... Show MoreCorrosion inhibiting admixtures are unique among other methods to protect reinforced concrete from corrosion damage. In this study, the effect of furfural on the fresh and hardened properties of concrete mixes of 35 and 45 MPa compressive strengths as well as the corrosion inhibition of furfural was evaluated. Furfural was added at different dosages (1, 2 and 3% by weight of cement) with and without superplasticizer (HRWR). Different electrochemical measurements were performed (Half-cell potential, Tafel plot and linear polarization resistance). Electrochemical measurements confirmed that furfural dramatically reduces the rate of corrosion; the inhibition efficiencies were 62.7 and 63.8 % due to 3% furfural addition to 35 and 45MPa-concr
... Show MoreThe structural behavior of Segmental Precast Post-tensioned Reinforced Concrete (SPPRC) beams largely depends on the behavior of the joints that connect between the segments. In this research, series of static tests were carried out to investigate the behavior of full-scale SPPRC beams with different types of epoxy-glued joint configurations; multi-key joint, single key, and plain key joint. The reference specimen was monolithically casted beam and the other specimens were segmental beams with five segments for each one. The general theme from the experimental results reflects an approximate similarity in the behavior of the four beams with slight differences. Due to the high tensile strength of the used epoxy in comparison to concr
... Show MoreAs human societies grow, the problem of waste management becomes one of the pressing issues that need to be addressed. Recycling and reuse of waste are effective waste management measures that prevent pollution and conserve natural resources. In this study, the possibility of using glass waste as an alternative was used as a partial weight substitute for fine aggregates with replacement ratios of 10, 20, 30, and 40% by the weight, and formed into test models (15 cm * 15 cm ) cube and (15 cm * 30 cm) cylinder, then matured and tested their strength compression and tensile strength at the age of 7 and 28 days and compared with a reference or conventional concrete with a mixing ratio (1: 1.5: 3) as well as testing its worka
... Show MoreThe research aims to highlight on the behavioural approach in accounting, and clarify the behavioural implications of the main activities of accounting, and clarify the concept of information inductance within the framework of the behavioural approach and its impact on preparing financial statements. And that the impact of financial information on the behaviour of investment decision-makers, and to achieve the goals of the research, the researcher prepared a questionnaire according to Likert five-step scale, and he took into consideration in preparing it in line with the characteristics of the study community, and that the target community for this questionnaire is the investors in the Iraq Stock Exchange. The researcher reached
... Show MoreWater absorbent polymers (WAP) are new component in producing building materials. They provide internal curing which reduces autogenous cracking, eliminates autogenous shrinkage, mortar strength increased, enhance early age strength to withstand strain, improve the durability, introduce higher early age compressive strength, have higher performance and reduce the effect of insufficient external curing. This research used different percent of polymer balls to choose the percent that provides good development in compressive strength with time for both water and air curing. The water absorption polymer balls in this research have the ability to absorb water and after usage in concrete they spill out the water (internal curing) and shri
... Show MoreIncorporating waste byproducts into concrete is an innovative and promising way to minimize the environmental impact of waste material while maintaining and/or improving concrete’s mechanical characteristics and strength. The proper application of sawdust as a pozzolan in the building industry remains a significant challenge. Consequently, this study conducted an experimental evaluation of sawdust as a fill material. In particular, sawdust as a fine aggregate in concrete offers a realistic structural and economical possibility for the construction of lightweight structural systems. Failure under four-point loads was investigated for six concrete-filled steel tube (CFST) specimens. The results indicated that recycled lightweight co
... Show More