Background: Mobile phones are approximately widely used everywhere like in hospital wards, clinics and universities as well as biomedical laboratories. They have become very important tool in students’ life. In contrast, these tools carry many harmful bacteria which are responsible for infectious diseases in human because they serve as a reservoir for different pathogens. Current study was aimed to isolate bacteria from students’ mobile phones at the Institute of Medical Technology/Al-Mansour/The Middle Technical University, Baghdad, Iraq. Also, the study investigated microbial resistance to many antimicrobial agents as well as the appropriate remedial measures. Method: Four hundred and fifty swabs from mobile phones were collected from 450 students (271 males and 179 females). Their age range was (17-30) years. Swabs were collected from students during March 2018. Results: Out of the 450 swabs, 150(33.33%) swabs were positive. The percentages of the isolated bacteria according to gender were 53.33%(80 isolates) from males’ mobile phones and 46.66%(70 isolates) from females’ mobile phones. The most frequent Gram-positive bacteria isolated were Staphylococcus aureus (50%) followed by S. epidermidis (20%), whereas Gram-negative bacteria isolated were Escherichia coli (6.0%), Proteus mirabilis (2.66%), Proteus vulgaris (2.66%) and Pseudomonas aeruginosa (2.66%). The isolated bacteria showed variable antimicrobial sensitivity patterns for different antibiotics. Most S. aureus isolates were resistant to Cefotaxime, Gentamycin, Amoxicillin, Ciprofloxacin and Augmentin, whereas other isolated species showed the highest resistance to many antibiotics of interest. The isolates of Micrococcus spp. were sensitive to all the studied antibiotics except Tetracycline and Fucidic acid. Conclusion: The present findings indicated that contaminated students’ mobile phones could serve as reservoirs of bacterial agents. Also, most of the latter were resistant to many commonly prescribed antimicrobial agents.
In this study, an improved process was proposed for the synthesis of structure-controlled Cu2O nanoparticles, using a simplified wet chemical method at room temperature. A chemical solution route was established to synthesize Cu2O crystals with various sizes and morphologies. The structure, morphology, and optical properties of Cu2O nanoparticles were analyzed by X-ray diffraction, SEM (scanning electron microscope), and UV-Vis spectroscopy. By adjusting the aqueous mixture solutions of NaOH and NH2OH•HCl, the synthesis of Cu2O crystals with different morphology and size could be realized. Strangely, it was found that the change in the ratio of de-ionized water and NaOH aqueous solution led to the synthesis of Cu2O crystals of differen
... Show MoreThis experiment was carried out at the Grdarash field belongs to the Agricultural researches directorate/general Agriculture directorate-Erbil in September (2007)، 27 Arabic lambs aged (5-6 months) With average initial weight (39.178 Kg/lamb) were used. Lambs were divided in to (3) groups (9 lambs/group). Control group was fed on (85% barely، 10% bran and 5% straw)، and second and third groups were fed on various by-product in replacement with barely in loss and block shape respectively.
The total gain of three groups were (392708.32، 634826.52 & 445613.72 ID resp
... Show MoreThe current study introduces a novel technique to handle electrochemical localized corrosion in certain limited regions rather than applying comprehensive cathodic protection (CP) treatment. An impressed current cathodic protection cell (ICCPC) was fabricated and firmly installed on the middle of a steel structure surface to deter localized corrosion in fixed or mobile steel structures. The designed ICCPC comprises three essential parts: an anode, a cathode, and an artificial electrolyte. The latter was developed to mimic the function of the natural electrolyte in CP. A proportional-integrated-derivative (PID) controller was designed to stabilize this potential below the ICCPC at a cathodic potential of −850 mV, which is crucial for prote
... Show MoreIn this research, non-thermal plasma system of argon gas is designed to work at normal atmospheric pressure and suitable for work in medical and biotechnological applications. This technique is applied in the treatment of the Staphylococcus epidermidis bacteria and show the role of the flow rate of Argon gas on the killing rate of bacteria, and it obtained a 100 % killing rate during the time of 5 minutes at the flow Argon gas of 5 liters/ min.
Efficiency of Pisum sativum plants in using tricalcium super phosphate (TSP) in presence and absence of mycorrhizal fungi was evaluated in the field experiment in College of Science / Al-Mustansiriyah University. The experiment comprised of (6) treatments prepared from the interaction of two levels of inoculation [non-inoculation with fungus F0 and inoculation with Glomus mosseae fungus (F1)]. And three levels of phosphorus: 0,20,40 Kg P/ha. The experimental size was (1x2)m. Irrigation and hand-weeding were done when needed. The following plant measurements were recorded: (Shoots dry weight, concentration of N and P% in addition to percentage of root infection with mycorrhizal fungi at flowering 50% of plants. The re
... Show MoreThe important device in the Wireless Sensor Network (WSN) is the Sink Node (SN). That is used to store, collect and analyze data from every sensor node in the network. Thus the main role of SN in WSN makes it a big target for traffic analysis attack. Therefore, securing the SN position is a substantial issue. This study presents Security for Mobile Sink Node location using Dynamic Routing Protocol called (SMSNDRP), in order to increase complexity for adversary trying to discover mobile SN location. In addition to that, it minimizes network energy consumption. The proposed protocol which is applied on WSN framework consists of 50 nodes with static and mobile SN. The results havw shown in each round a dynamic change in the route to reach mobi
... Show MoreNowadays, Wheeled Mobile Robots (WMRs) have found many applications as industry, transportation, inspection, and other fields. Therefore, the trajectory tracking control of the nonholonomic wheeled mobile robots have an important problem. This work focus on the application of model-based on Fractional Order PIaDb (FOPID) controller for trajectory tracking problem. The control algorithm based on the errors in postures of mobile robot which feed to FOPID controller to generate correction signals that transport to torque for each driven wheel, and by means of dynamics model of mobile robot these torques used to compute the linear and angular speed to reach the desired pose. In this work a dynamics model of
... Show MoreThe present study aimed to asspssment the nutrition a program to sample of student from internal departments of Baghdad University (AL-Jadiriya Complex) and the University of AL-MustanSiriya four grades and aged (19-24) year study included 150 male and female students by (75) male and (75) of female register height, weight nd body mass index were study habits and food pattern of the same sample (150) and by aspecial form and take the personal information interviews and record information on food intake during 24 hour .noted adifference practie in the weights and longths of male and female (sample).
BMI rates were within the normal weight as the value of BMI for males aged (19- 21)and (22-24) and (22.21) and (23,37),respectively and th