Accurate emotion categorization is an important and challenging task in computer vision and image processing fields. Facial emotion recognition system implies three important stages: Prep-processing and face area allocation, feature extraction and classification. In this study a new system based on geometric features (distances and angles) set derived from the basic facial components such as eyes, eyebrows and mouth using analytical geometry calculations. For classification stage feed forward neural network classifier is used. For evaluation purpose the Standard database "JAFFE" have been used as test material; it holds face samples for seven basic emotions. The results of conducted tests indicate that the use of suggested distances, angles and others relative geometric features for recognition give accuracy about 95.73% when the seven emotion classes are tested and 97.23% when the 6 classes (except normal class) are only tested. These rates are considered high when compared with the results of other newly published works.
This paper proposes and tests a computerized approach for constructing a 3D model of blood vessels from angiogram images. The approach is divided into two steps, image features extraction and solid model formation. In the first step, image morphological operations and post-processing techniques are used for extracting geometrical entities from the angiogram image. These entities are the middle curve and outer edges of the blood vessel, which are then passed to a computer-aided graphical system for the second phase of processing. The system has embedded programming capabilities and pre-programmed libraries for automating a sequence of events that are exploited to create a solid model of the blood vessel. The gradient of the middle c
... Show MoreThis article proposes a new strategy based on a hybrid method that combines the gravitational search algorithm (GSA) with the bat algorithm (BAT) to solve a single-objective optimization problem. It first runs GSA, followed by BAT as the second step. The proposed approach relies on a parameter between 0 and 1 to address the problem of falling into local research because the lack of a local search mechanism increases intensity search, whereas diversity remains high and easily falls into the local optimum. The improvement is equivalent to the speed of the original BAT. Access speed is increased for the best solution. All solutions in the population are updated before the end of the operation of the proposed algorithm. The diversification f
... Show MoreHigh vehicular mobility causes frequent changes in the density of vehicles, discontinuity in inter-vehicle communication, and constraints for routing protocols in vehicular ad hoc networks (VANETs). The routing must avoid forwarding packets through segments with low network density and high scale of network disconnections that may result in packet loss, delays, and increased communication overhead in route recovery. Therefore, both traffic and segment status must be considered. This paper presents real-time intersection-based segment aware routing (RTISAR), an intersection-based segment aware algorithm for geographic routing in VANETs. This routing algorithm provides an optimal route for forwarding the data packets toward their destination
... Show MoreThe influx of data in bioinformatics is primarily in the form of DNA, RNA, and protein sequences. This condition places a significant burden on scientists and computers. Some genomics studies depend on clustering techniques to group similarly expressed genes into one cluster. Clustering is a type of unsupervised learning that can be used to divide unknown cluster data into clusters. The k-means and fuzzy c-means (FCM) algorithms are examples of algorithms that can be used for clustering. Consequently, clustering is a common approach that divides an input space into several homogeneous zones; it can be achieved using a variety of algorithms. This study used three models to cluster a brain tumor dataset. The first model uses FCM, whic
... Show MoreIn this study, silica-graphene oxide nano–composites were prepared by sol-gel technique and deposited by spray pyrolysis method on glass substrate. The effect of changing the graphene/silica ratio on the optical properties and wetting of these nano–structures has been investigated. The structural and morphological properties of the thin films have been studied by x-ray diffraction spectroscopy (XRD), field emission scanning electron microscope (FESEM), energy dispersive x-ray spectroscopy (EDS) and atomic force microscope (AFM). XRD results show that silica structures present in the synthesized films exhibit amorphous character and there is a poor arrangement in graphene plates al
The research aims to identify the level of functional engagement and hope-based thinking of kindergarten teachers, identify if there is a significant difference in functional engagement and hope-based thinking in terms of specialization and years of service for kindergarten teachers, identify if there is a significant correlation between functional engagement and hope-based thinking of kindergarten teachers. The current research is determined by kindergarten teachers in the Second Rusafa Baghdad Education Directorate for the academic year (2022-2023). In order to achieve the objectives of the research, the researcher prepared a functional engagement scale, which consists of (45) items in three areas: Perceptual and functional engagement
... Show More