Preferred Language
Articles
/
YBYU44sBVTCNdQwCpOOW
Subject Independent Facial Emotion Classification Using Geometric Based Features
...Show More Authors

Accurate emotion categorization is an important and challenging task in computer vision and image processing fields. Facial emotion recognition system implies three important stages: Prep-processing and face area allocation, feature extraction and classification. In this study a new system based on geometric features (distances and angles) set derived from the basic facial components such as eyes, eyebrows and mouth using analytical geometry calculations. For classification stage feed forward neural network classifier is used. For evaluation purpose the Standard database "JAFFE" have been used as test material; it holds face samples for seven basic emotions. The results of conducted tests indicate that the use of suggested distances, angles and others relative geometric features for recognition give accuracy about 95.73% when the seven emotion classes are tested and 97.23% when the 6 classes (except normal class) are only tested. These rates are considered high when compared with the results of other newly published works.

Crossref
View Publication Preview PDF
Quick Preview PDF
Publication Date
Sun Nov 01 2020
Journal Name
Iop Conference Series: Materials Science And Engineering
Development of an Optimized Botnet Detection Framework based on Filters of Features and Machine Learning Classifiers using CICIDS2017 Dataset
...Show More Authors
Abstract<p>Botnet is a malicious activity that tries to disrupt traffic of service in a server or network and causes great harm to the network. In modern years, Botnets became one of the threads that constantly evolving. IDS (intrusion detection system) is one type of solutions used to detect anomalies of networks and played an increasing role in the computer security and information systems. It follows different events in computer to decide to occur an intrusion or not, and it used to build a strategic decision for security purposes. The current paper <italic>suggests</italic> a hybrid detection Botnet model using machine learning approach, performed and analyzed to detect Botnet atta</p> ... Show More
View Publication
Scopus (18)
Crossref (12)
Scopus Crossref
Publication Date
Thu Apr 25 2013
Journal Name
Isprs International Journal Of Geo-information
Using Geometric Properties to Evaluate Possible Integration of Authoritative and Volunteered Geographic Information
...Show More Authors

The assessment of data quality from different sources can be considered as a key challenge in supporting effective geospatial data integration and promoting collaboration in mapping projects. This paper presents a methodology for assessing positional and shape quality for authoritative large-scale data, such as Ordnance Survey (OS) UK data and General Directorate for Survey (GDS) Iraq data, and Volunteered Geographic Information (VGI), such as OpenStreetMap (OSM) data, with the intention of assessing possible integration. It is based on the measurement of discrepancies among the datasets, addressing positional accuracy and shape fidelity, using standard procedures and also directional statistics. Line feature comparison has been und

... Show More
View Publication
Scopus (28)
Crossref (26)
Scopus Clarivate Crossref
Publication Date
Sun Oct 15 2017
Journal Name
Research Journal Of Applied Sciences, Engineering And Technology
Optimization of IPv6 Protocol Independent Multicast-Sparse Mode Multicast Routing Protocol based on Greedy Rendezvous Point Selection Algorithm
...Show More Authors

View Publication
Crossref
Publication Date
Tue Jan 01 2019
Journal Name
Aip Conference Proceedings
Improvement of electrical features of SnO2 based varistor doped with Al2O3
...Show More Authors

One of the important objectives of the varistor is for a sustainable environment and reduce the pollution resulting from the frequent damage of the electrical devices and power station waste. In present work, the influence of Al2O3 additives on the non –linear electrical features of SnO2 varistors, has been investigated, where SnO2 ceramic powder doped with Al2O3 in three rates (0.005, 0.01, and 0.05), the XRD test improved that SnO2 is the primary phase, while CoCr2O4, and Al2O3 represent the secondary phases. The electrical tests of all prepared samples confirmed that the increasing of Al2O3 rates and sintering temperature improves and increase the electrical features, where the best results obtained at Al2O3 (0.05) and 1000℃, the non

... Show More
View Publication Preview PDF
Scopus Crossref
Publication Date
Sun Sep 24 2023
Journal Name
Journal Of Al-qadisiyah For Computer Science And Mathematics
Human Recognition Using Ear Features: A Review
...Show More Authors

Over the past few years, ear biometrics has attracted a lot of attention. It is a trusted biometric for the identification and recognition of humans due to its consistent shape and rich texture variation. The ear presents an attractive solution since it is visible, ear images are easily captured, and the ear structure remains relatively stable over time.  In this paper, a comprehensive review of prior research was conducted to establish the efficacy of utilizing ear features for individual identification through the employment of both manually-crafted features and deep-learning approaches. The objective of this model is to present the accuracy rate of person identification systems based on either manually-crafted features such as D

... Show More
View Publication
Crossref
Publication Date
Sat Oct 03 2009
Journal Name
Proceeding Of 3rd Scientific Conference Of The College Of Science
Research Address: New Multispectral Image Classification Methods Based on Scatterplot Technique
...Show More Authors

Publication Date
Tue Dec 05 2023
Journal Name
Baghdad Science Journal
AlexNet-Based Feature Extraction for Cassava Classification: A Machine Learning Approach
...Show More Authors

Cassava, a significant crop in Africa, Asia, and South America, is a staple food for millions. However, classifying cassava species using conventional color, texture, and shape features is inefficient, as cassava leaves exhibit similarities across different types, including toxic and non-toxic varieties. This research aims to overcome the limitations of traditional classification methods by employing deep learning techniques with pre-trained AlexNet as the feature extractor to accurately classify four types of cassava: Gajah, Manggu, Kapok, and Beracun. The dataset was collected from local farms in Lamongan Indonesia. To collect images with agricultural research experts, the dataset consists of 1,400 images, and each type of cassava has

... Show More
View Publication Preview PDF
Scopus (2)
Scopus Crossref
Publication Date
Tue Dec 05 2023
Journal Name
Baghdad Science Journal
Indoor/Outdoor Deep Learning Based Image Classification for Object Recognition Applications
...Show More Authors

With the rapid development of smart devices, people's lives have become easier, especially for visually disabled or special-needs people. The new achievements in the fields of machine learning and deep learning let people identify and recognise the surrounding environment. In this study, the efficiency and high performance of deep learning architecture are used to build an image classification system in both indoor and outdoor environments. The proposed methodology starts with collecting two datasets (indoor and outdoor) from different separate datasets. In the second step, the collected dataset is split into training, validation, and test sets. The pre-trained GoogleNet and MobileNet-V2 models are trained using the indoor and outdoor se

... Show More
View Publication Preview PDF
Scopus (4)
Scopus Crossref
Publication Date
Mon Jan 01 2018
Journal Name
Applied Science Reports
Facial Acne Therapy by Using Pumpkin Seed Oil with Its Physicochemical Properties
...Show More Authors

The herbal remedy individually or in combination with standard medicines has been used in diverse medical treatises for the cure of different diseases. Pumpkin seed oil is one of the recognized edible oil and has substantial medicinal properties due to the presence of unique natural edible substances. Inflammation is an adaptive response that is triggered by noxious stimuli and conditions, which involves interactions amongst many cell types and mediators, and underlies many pathological processes. Unsaturated fatty acids (UFAs) can influence inflammation through a variety of mechanisms, and have been indicated as alternative anti-inflammatory agents to treat several inflammatory skin disorders. Pumpkin seed oil is rich in (UFAs), that its t

... Show More
Preview PDF
Publication Date
Sat Jan 01 2022
Journal Name
Turkish Journal Of Physiotherapy And Rehabilitation
classification coco dataset using machine learning algorithms
...Show More Authors

In this paper, we used four classification methods to classify objects and compareamong these methods, these are K Nearest Neighbor's (KNN), Stochastic Gradient Descentlearning (SGD), Logistic Regression Algorithm(LR), and Multi-Layer Perceptron (MLP). Weused MCOCO dataset for classification and detection the objects, these dataset image wererandomly divided into training and testing datasets at a ratio of 7:3, respectively. In randomlyselect training and testing dataset images, converted the color images to the gray level, thenenhancement these gray images using the histogram equalization method, resize (20 x 20) fordataset image. Principal component analysis (PCA) was used for feature extraction, andfinally apply four classification metho

... Show More