Preferred Language
Articles
/
Y4b7poYBIXToZYALj5zJ
A hybrid solidification enhancement in a latent-heat storage system with nanoparticles, porous foam, and fin-aided foam strips

Scopus Clarivate Crossref
Publication Date
Mon May 01 2017
Journal Name
Energy
Scopus (159)
Crossref (158)
Scopus Clarivate Crossref
View Publication
Publication Date
Sat Apr 01 2017
Journal Name
Applied Energy
Scopus (242)
Crossref (234)
Scopus Clarivate Crossref
View Publication
Publication Date
Wed Jan 01 2020
Journal Name
Applied Energy
Scopus (241)
Crossref (235)
Scopus Clarivate Crossref
View Publication
Publication Date
Sat Jan 01 2022
Journal Name
Journal Of Energy Storage
Scopus (51)
Crossref (44)
Scopus Clarivate Crossref
View Publication
Publication Date
Mon Nov 01 2021
Journal Name
Energies
Solidification Enhancement in a Triple-Tube Latent Heat Energy Storage System Using Twisted Fins

This work evaluates the influence of combining twisted fins in a triple-tube heat exchanger utilised for latent heat thermal energy storage (LHTES) in three-dimensional numerical simulation and comparing the outcome with the cases of the straight fins and no fins. The phase change material (PCM) is in the annulus between the inner and the outer tube, these tubes include a cold fluid that flows in the counter current path, to solidify the PCM and release the heat storage energy. The performance of the unit was assessed based on the liquid fraction and temperature profiles as well as solidification and the energy storage rate. This study aims to find suitable and efficient fins number and the optimum values of the Re and the inlet tem

... Show More
Scopus (32)
Crossref (32)
Scopus Clarivate Crossref
View Publication
Publication Date
Sun Jan 01 2017
Journal Name
Proceeding Of Second Thermal And Fluids Engineering Conference
Crossref (1)
Crossref
View Publication
Publication Date
Tue Nov 09 2021
Journal Name
Energies
Natural Convection Effect on Solidification Enhancement in a Multi-Tube Latent Heat Storage System: Effect of Tubes’ Arrangement

The solidification process in a multi-tube latent heat energy system is affected by the natural convection and the arrangement of heat exchanger tubes, which changes the buoyancy effect as well. In the current work, the effect of the arrangement of the tubes in a multi-tube heat exchanger was examined during the solidification process with the focus on the natural convection effects inside the phase change material (PCM). The behavior of the system was numerically analyzed using liquid fraction and energy released, as well as temperature, velocity and streamline profiles for different studied cases. The arrangement of the tubes, considering seven pipes in the symmetrical condition, are assumed at different positions in the system, i

... Show More
Scopus (10)
Crossref (9)
Scopus Clarivate Crossref
View Publication
Publication Date
Mon Jul 01 2019
Journal Name
International Journal Of Heat And Mass Transfer
Scopus (239)
Crossref (245)
Scopus Clarivate Crossref
View Publication
Publication Date
Mon Nov 22 2021
Journal Name
Nanomaterials
Melting Enhancement in a Triple-Tube Latent Heat Storage System with Sloped Fins

Due to the potential cost saving and minimal temperature stratification, the energy storage based on phase-change materials (PCMs) can be a reliable approach for decoupling energy demand from immediate supply availability. However, due to their high heat resistance, these materials necessitate the introduction of enhancing additives, such as expanded surfaces and fins, to enable their deployment in more widespread thermal and energy storage applications. This study reports on how circular fins with staggered distribution and variable orientations can be employed for addressing the low thermal response rates in a PCM (Paraffin RT-35) triple-tube heat exchanger consisting of two heat-transfer fluids flow in opposites directions throug

... Show More
Scopus (33)
Crossref (31)
Scopus Clarivate Crossref
View Publication
Publication Date
Mon Oct 12 2020
Journal Name
Molecules
Phase Change Process in a Zigzag Plate Latent Heat Storage System during Melting and Solidification

Applying a well-performing heat exchanger is an efficient way to fortify the relatively low thermal response of phase-change materials (PCMs), which have broad application prospects in the fields of thermal management and energy storage. In this study, an improved PCM melting and solidification in corrugated (zigzag) plate heat exchanger are numerically examined compared with smooth (flat) plate heat exchanger in both horizontal and vertical positions. The effects of the channel width (0.5 W, W, and 2 W) and the airflow temperature (318 K, 323 K, and 328 K) are exclusively studied and reported. The results reveal the much better performance of the horizontal corrugated configuration compared with the smooth channel during both melti

... Show More
Scopus (32)
Crossref (30)
Scopus Clarivate Crossref
View Publication