In this study, a system of nonthermal plasma that was operated under atmospheric pressure and was powered by argon gas was employed. The particular plasma properties are affected by changes in the Ar gas flow ranges from 0.5 to 2.5 l/min, product by stream of the plasma jet that is utilized. By using the aforementioned method generated from AC and DC. After placing Ar gas as the cathode, which represents the negative pole, flows toward the anode, which is represented by a tiny metal plate of Zn measuring 6 × 1 cm2 in size, with a submerged part of 4 cm2 long, with both types of current employed having a high voltage of 13.5 kV and the frequency of AC was 30 kHz, we measured these variable parameters. It has been shown that when argon flow rises, ionization and plasma glow increase in AC and DC. Thus, when alternating current was utilized, an increase in the plasma properties increased with rose a gas flow ratio of 0.5–2.5 l/min. So the value of electron temperature (Te) increased from 1.49 to 1.84 eV, electron density (ne) also increased from 0.53 × 1018 to 5.40 × 1018 cm−3, fp increased from 0.649 × 1013 to 2.087 × 1013 Hz, while λD reduced from 0.116 × 10^−5 to 0.040 × 10^−5 cm. As for when utilizing DC, the plasma parameters rose with an increase in flow ratio of Ar gas of 0.5–2.5 l/min, thus the value of (Te) elevation of 1.40–1.82 eV, the value of (ne) also elevation of 0.34 × 1018–5.15 × 1018 cm−3, (fp) increased of 0.527 × 1013–2.037 × 1013 Hz, while (λD) reduced of 0.139 × 10^−5–0.041 × 10^−5 cm. The results showed that the AC had a bigger impact on the plasma properties than the DC, as seen by the spectrum peaks identified by a spectrometer.
A novel metal-organic framework (MOF) sorbent based on tannic acid/copper (TA/Cu) was synthesized and characterized for the application of the anticancer drug imatinib (IMA) from biological samples. The TA/Cu MOF was prepared via a facile coordination reaction and thoroughly characterized by SEM, XRD, and FTIR techniques. Critical parameters influencing the extraction efficiency of imatinib mesylate (IMAM), including pH, ionic strength, desorption solvent, and adsorption-desorption time were optimized. With acetonitrile as the desorption solvent, the method demonstrated a broad linear range of 0.55-300 μg L-1 under ideal conditions. Limits of detection and quantification were found to be 0.16 μg L-1 and 0.55 μg L-1, respectively.
... Show MoreWe studied in this research how to find a method of estimating the quantity (Kinetically) of three kinds of Insecticide and their mixture, which are used in agriculture. The extracted insecticide from the polluted samples with these insect from air, soil, and the leaves of trees, have be used into the reaction with H2O2 and benzedine. The kinetic study of this reaction was formed in basic medium,( pH= 8.6), using UV. Spectra at (?= 420nm). The study showed that the reaction is the first order, and the speed of the reaction was used to estimate the concentration of insecticide in solution and mixture. The experiments of this study indicated that this method has the speed and efficiency for quantitatively estimating these
... Show MoreIn addition to its basic communicative function, language can be used to imply information that is not actually stated, i.e. addressers do not always state exactly (or directly) what they mean. Such instances fall within the domain of pragmatics in that they have to do with how addressers use language to communicate in a particular situation by implication rather than by direct statement. The researcher attempts to demonstrate that the beauty and the multiple layers of meaning in poetry can be better explored if the addressee looks at the lines from a pragmatic perspective in search for implied meaning. There are many devices that can convey implied meaning in poetry, among which are 'rhetorical', 'figurative' or 'literary' devices. But
... Show More
Theoretical spectroscopic studies of beryllium oxide has been carried out, potential energy curves for ground states X1Σ+ and exited states A1Π , B1Σ+ by using two functions Morse and and Varshni compared with experimental results. The potentials of this molecule are agreement with experimental results. The Fortrat Parabola corrcponding to and branches were determind in the range 1<J<20 for the (0-0) band. It was found that for electronic transition A1Π- X1Σ+ the bands head lies in branche of Fortrat p |
generator the metal conductor is replaced by conducting gas plasma.
Fusarium pseudograminearum and Fusarium graminearum commonly cause crown rot (FCR) and head blight (FHB) in wheat, respectively. Disease infection and spread can be reduced by the deployment of resistant cultivars or through management practices that limit inoculum load. Plants deficient in micronutrients, including zinc, tend to be more susceptible to many diseases. On the other hands, and zinc deficiency in cereals is widespread in Australian soils. Zinc deficiency may have particular relevance to crown rot, the most important and damaging Fusarium disease of wheat and barley in Australia. Four wheat genotypes; Batavia, Sunco and two lines from the International Maize and Wheat Improvement Center (CIMMYT) were tested for response
... Show MoreIn this paper flotation method experiments were performed to investigate the removal of lead and zinc. Various parameters such as pH, air flow rate, collector concentrations, collector type and initial metal concentrations were tested in a bubble column of 6 cm inside diameter. High recoveries of the two metals have been obtained by applying the foam flotation process, and at relatively short time 45 minutes . The results show that the best removal of lead about 95% was achieved at pH value of 8 and the best removal of zinc about 93% was achieved
at pH value of 10 by using 100 mg/l of Sodium dodecylsulfate (SDS) as a collector and 1% ethanol as a frother. The results show that the removal efficiency increased with increasing initial m
In this study, the nanocrystal-ZnS-loaded graphene was synthesized by a facile coprecipitation route. The effect of graphene on the characterization of Zinc Sulphide (ZnS) was investigated. The X-ray Diffraction (XRD) results reveal that ZnS has cubic system while hexagonal structure which is observed by loading graphene during the preparation of ZnS. Energy Dispersive X-ray Spectroscopy (EDS) analysis proved the presence of all expected elements in the prepared materials. Nanosize of fabricated materials has been measured using Scanning Electron Microscopy (SEM) technique. This study also found that the graphene plays a critical role in lowering the optical energy gap of ZnS nanoparticles from 4 eV to 3.2 eV. The characterization of detec
... Show MoreBackground: The purpose of this study was to compare regional bond strength at middle and cervical thirds of the root canal among glass fiber-reinforced composite (FRC) endodontic posts cemented with different cements, using the push-out test to compare the performance (retention) of two types of luting cements; polycarboxylate cement and Zinc phosphate cement used to cement translucent fiber post and to compare the result of the push-out test at different storage times;1 week ,1month and 2 months. Materials and methods: Ninety caries-free, recently extracted single-rooted human teeth with straight root canals was used in this study, The root canals were endodontically instrumented at a working length of 0.5 mm from the apex by m
... Show MoreZnS:Ce3+ nanoparticles were prepared by a simple microwave irradiation method under mild condition. The starting materials for the synthesis of ZnS:Ce3+ quantum dots were zinc acetate (R & M Chemical) as zinc source, thioacetamide as a sulfur source, cerium chloride as cerium source and ethylene glycol as a solvent. All chemicals were analytical grade products and used without further purification. The quantum dots of ZnS:Ce3+ with cubic structure were characterized by X-ray powder diffraction (XRD), the morphology of the film is seen by scanning electron microscopy (SEM) also by field effect scanning electron microscopy (FESEM) and XRD. Upon exposure to 460 nm light at zero bias voltage, ZnS:Ce3+/p-Si showed a high sensitivity of 4000% an
... Show More