The Manganese doped zinc sulfide nanoparticles of the cubic zinc blende structure with the average crystallite size of about 3.56 nm were synthesized using a coprecipitation method using Thioglycolic Acid as an external capping agent for surface modification. The ZnS:Mn2+ nanoparticles of diameter 3.56 nm were manufactured through using inexpensive precursors in an efficient and eco-friendly way. X-Ray Diffraction (XRD), Scanning Electron Microscopy (SEM) and Fourier Transform Infrared (FTIR) spectroscopy are used to examine the structure, morphology and chemical composition of the nanoparticles. The antimicrobial activity of (ZnS:Mn2+) nanocrystals was investigated by measuring the diameter of inhibition zone using well diffusion mechanism versus two various bacterial strains. The technique of microorganism inactivation was considered as sorts-dependent. Bacillus subtilis showed the largest antibacterial sensitivity (35 mm) to ZnS: Mn2+ nanoparticles at a concentration (50 mM) whereas Escherichia coli offered maximum zone of inhibition (20 mm) at the same concentration. In this study, the results indicated that ZnS:Mn2+ nanoparticles were found to have significant antibacterial activity against Gram-negative (E. coli) and Gram-positive (Bacillus subtilis) bacteria.
This study was aimed to produce AuNPs biologically using Klebsiella pneumoniae and study their synergistic effect with some antibiotics.Technologies of nanoparticles are quick and are employed in many applications in biomedicine. The potential of metallic nanoparticle as an anti-microbial agent is greatly investigated which considered as an alternative method to reduce the challenges of multi-drug resistance microbes. The present study discusses the novel approach to synthesize nanoparticles involving eco-friendly synthesis of gold nanoparticles using Klebsiella pneumoniae and study their effect as antimicrobial spectrum .Also study synergism effect of gold nanoparticles with antibiotic against Acinetobacter baumannii. These approac
... Show MoreLaboratory model tests were performed to investigate the behavior of shallow and inclined skirted foundations placed on sandy soil with R.D%=30 and the extent of the impact of the positive and negative eccentric-inclined loading effect on them. To achieve the experimental tests, it was used a box of (600×600) mm cross-sectional and 600mm in height and a square footing of (50*50) mm and 10 mm in thickness attached to the skirt with Ds=0.5B and various an angle of (10°, 20°, 30°). The results showed that using skirts leads to a significant improvement in load-carrying capacity and decreased settlement. In addition, when the skirt angle increased, the ultimate load improved. Load-carrying capacity decreased with increasing eccentri
... Show MoreThe characteristic of our time is the tremendous technological progress and the wide use of the Internet. Children have had a large share of this progress.as they are becoming fond of having the technological equipment of tablets and mobile phones which become indispensable for these children cannot do without them .
Recently, the phenomenon of using mobile phones and tablets by children has become more widespread, and the society in general and parents, in particular, have ignored the reasons for their health .Despite the many advantages and benefits for children who are well trained to use these devices properly that have enhanced their cognitive and social abilities, there are many disadvantages that could harm children's growth if
In the present study NiPcTs, CdS thin films, and Blends of NiPcTs:CdS were prepared with 1:2 content mixing ratio of NiPcTs to CdS solutions. Cadmium chloride and thiourea were used as the essential materials for deposition CdS thin films while using organic powder of NiPcTs to deposit NiPcTs nanostructure films. The spin-coating technique was employed to fabricate the NiPcTs , CdS films and NiPcTs-CdS blend. Structural properties of films have been investigated via X-Ray diffraction(XRD),and show that thin films of NiPcTs, and CdS have monoclinic and polycrystalline hexagonal structure respectively while the blend has two polycrystalline structure with cubic and hexagonal phases. Atomic force microscope (AFM) confirmed that the surf
... Show Moreفي هذا البحث تم تحضير المركبات المعدنية الجديدة لأيونات البلاتين (الرباعي) و الذهب (الثلاثي) مع ليكاند قاعدة مانخ جديد مشتق من السيبروفلوكساسين . تم استخدام المعقدات بعد ذلك كمصدر لتحضير جزيئات عن طريق ترسيب المعقدات على مسام دقائق السيليكا النانوية. Si/Au2O3 Si/PtO2 تم تشخيص الليكاند و معقداته
... Show MoreIn this study Oscillatoria limnetica and Chroococus minor were isolated ?purified and identification from water canal around Baghdad University Campus. The water of this canals originally from Tigris River. BG-11 culture media was used for their cultivation in suitable laboratory conditions (25c°, 200µE/m2/sec) for 16:8 hrs. Light: dark. Each culture was harvested at the end of exponential phase .Organic solvents used for extraction were Ethanol? Hexane and Methanol 95% to extract the crude active Intracellular and Extracellular substances, and evaporated down to dryness .Antibacterial and antifungal activity of these different extracts were evaluated against 6 strains of gram positive bacteria and gram negative bacteria in additi
... Show MoreThis work concerned on nanocrystalline NiAl2O4 and ZnAl2O4 having spinel structure prepared by Sol–gel technique. The structural and characterization properties for the obtained samples were examined using different measurements such as X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), finally, Field emission scanning electron microscope (FESEM).The Spinel-type for two prepared compound (NiAl2O4) and (ZnAl2O4) at different calcination temperature examined by XRD. Williamson-Hall Methods used to estimate crystallite size, Average distribution crystallite size of two compound were, 34.2 nm for NiAl2O4 and32.6 for ZnAl2O4, the increase in crystallite size affecting by increasing in calcination temperature for both comp
... Show MoreThin films of In2O3-CdO at various CdO contents (0.01, 0.02, 0.03, 0.04 and 0.05) were deposited on transparent substrate which is glass using chemical spray pyrolysis deposition method at substrate temperature 150oC. The structural properties was studied to characterize the prepared materials by XRD analysis. Surface morphology has been illustrated using scanning electron microscopy which proved the nanosize of prepared materials. This materials have been used as gas sensor for toxic gas which is hydrogen sulfide H2S. The sensitivity and response speed have been investigated with addition of CdO nanoparticles. © 2021, S.C. Virtual Company of Phisics S.R.L. All rights reserved.
The apricot plant was washed, dried, and powdered after harvesting to produce a fine powder that was used in water treatment. created an alcoholic extract from the apricot plant using ethanol, which was then analysed using GC-MS, Fourier transform infrared spectroscopy, and ultraviolet-visible spectroscopy to identify the active components. Zinc nanoparticles were created using an alcoholic extract. FTIR, UV-Vis, SEM, EDX, and TEM are used to characterize zinc nanoparticles. Using a continuous processing procedure, zinc nanoparticles with apricot extract and powder were employed to clean polluted water. Firstly, 2 g of zinc nanoparticles were used with 20 ml of polluted water, and the results were Tetra 44% and Levo 32%; after
... Show More